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Contagion-Based Domains
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Many strategic actions carry a ‘contagious’component beyond the immediate locale of the effort itself.
Viral marketing and peacekeeping operations have both been observed to have a spreading effect.
In this work, we use counterinsurgency as our illustrative domain. Defined as the effort to block
the spread of support for an insurgency, such operations lack the manpower to defend the entire
population and must focus on the opinions of a subset of local leaders.As past researchers of security
resource allocation have done, we propose using game theory to develop such policies and model the
interconnected network of leaders as a graph. Unlike this past work in security games, actions in
these domains possess a probabilistic, non-local impact. To address this new class of security games,
we combine recent research in influence-blocking maximization with a double oracle approach and
create novel heuristic oracles to generate mixed strategies for a real-world leadership network from
Afghanistan, synthetic leadership networks and scale-free graphs. We find that leadership networks
that exhibit highly interconnected clusters can be solved equally well by our heuristic methods, but
our more sophisticated heuristics outperform simpler ones in less interconnected scale-free graphs.
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1. INTRODUCTION

Many adversarial domains exhibit ‘contagious’ actions for
each player. For example, word-of-mouth advertising/viral
marketing has been widely studied by marketers trying to
understand why one product or video goes ‘viral’ while others
go unnoticed [1].
Counterinsurgency (COIN) is the contest for the support

of the local leaders in an armed conflict and can include a
variety of operations such as providing security and giving
medical supplies [2]. Just as in word-of-mouth advertising
and peacekeeping operations, these efforts carry a social effect
beyond the action taken that can cause advantageous ripples
through the neighboring population [3]. Moreover, multiple
intelligent parties attempt to leverage the same social network
to spread their message, necessitating an adversary-aware
approach to strategy generation.
Weuse a game-theoretic approach to the problemand develop

algorithms to generate resource allocations strategies for such
large-scale, real-world networks. We model the interaction as a
graph with one player attempting to spread influence while the
other player attempts to stop the probabilistic propagation of

that influence by spreading their own influence. This ‘blocking’
problem models situations faced by governments/peacekeepers
combatting the spread of terrorist radicalism and armed conflict
with daily/weekly/monthy visits with local leaders to provide
support and discuss grievances [4].
This follows work in security games from recent years

[5–9]. While some works have also modeled interactions on
a graph, we extend the approach into a new area where
actions carry a ‘contagion’ effect. The problem is a type of
influence blocking maximization (IBM) problems [10, 11],
which are a competitive extension of the widely studied
influencemaximization problem [12, 13]. Past work in IBM has
looked only at the best-response problems and has not produced
algorithms to generate the game-theoretic equilibria necessary
for this repeated-interaction domain.
The first major contribution of this work is opening up a new

area of research that combines recent research in security games
and in IBM. We provide the first techniques for generating
game-theoretic equilibria.Drawing from recentwork in security
games, we propose using a double oracle algorithm where
each oracle produces a single player’s best response to the
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2 J. Tsai et al.

opponent’s strategy and incrementally creates the payoff matrix
being solved. This approach allows us to leverage advances in
IBM research that has focused entirely on fast best-response
calculations.
The second contribution of our work is in proving

approximation quality bounds on the double oracle approach
when one of the oracles is approximated and combining this
with a greedy approximate oracle to produce a more efficient
approximate algorithm. Our final major contribution is to
introduce two heuristic oracles, LSMI and PAGERANK, that
offer much greater efficiency to address scaling issues with
the approximate technique. We conclude with an experimental
exploration of a variety of combinations of oracles, testing
runtime and quality on a real-world leadership network in
Afghanistan, synthetic leadership networks and random scale-
free graphs. We find that the performance of the basic
PAGERANK oracle suffers minimal loss compared with
LSMI in leadership networks that possess clusters of highly
interconnected nodes, but performs far worse in sparsely
interconnected scale-free graphs. Finally, an unintuitive blend
of the two oracles offers the best combination of scalability and
solution quality.

2. RELATEDWORK

Recent works in game-theoretic security allocation have also
dealt with domains that were modeled as graphs [5, 6, 14];
however, their actions were all deterministically defined and
did not feature a probabilistic contagion component. This
‘spreading’ aspect of the problem is very closely related to
influence maximization and inoculation problems. Influence
maximization, inwhich a player attempts to optimize a selection
of beginning ‘seed’ nodes from which to spread his influence
in a known graph, saw its first treatment in computer science
as a discrete maximization problem by Kempe et al. [15] who
proposed a greedy approximation, followed up by numerous
proposed speed-up techniques [12, 13, 16]. Although these are
one-player games, we draw inspiration from their techniques to
address efficiency issues in our work.
Standard inoculation games feature a defender that attempts

to protect nodes in a graph and, usually, a random outbreak
of a disease on a node in the graph. These games typically
model nature as the adversary, which chooses an initial set
of nodes with some predefined probability distribution that
the defender is optimizing against [17–22]. Variations on this
include distributed inoculation games where each node acts
independently, in which results such as price of anarchy are
generally considered [17, 20]. These games, however, do not
include an optimizing adversary, amounting to only an attacker
or defender best-response problem.
IBMproblems,whichwe use tomodel our domain, have been

explored with both independent cascade and linear threshold
models of propagation [10, 11]. Both of these works only

explored the defender’s best-response problem instead of
equilibrium strategy generation. Aside from IBM, a number
of researchers have also explored mutual maximization models
where all players seek tomaximize their own influence [23, 24].
Finally, Hung et al. [25] and Howard [4] also address the
COIN problem. However, Hung et al. [25] assume a static
adversary and Howard [4] only solves for pure strategies.
This forced predictability in a repeated-interaction situation is
dangerous since a real adversary can directly ambush COIN
teams.Additionally, it may be suboptimal since a real adversary
has no such limitation.

3. PROBLEM DEFINITION

The COIN domain we focus on includes one party that attempts
to subvert the population to their cause and another party
that attempts to thwart the first party’s efforts [3, 4, 25]. We
assume that each side can carry out operations such as provide
security or give medical supplies to sway the local leadership’s
opinion. Furthermore, local leaders will impact other leaders’
opinions of the two parties. Specifically, one leader will
convert other leaders to side with their affiliated party with
some predetermined probability, giving each party’s actions
a ‘spreading’ effect. Since resources for COIN operations are
very limited relative to the size of the task, each party is faced
with a resource allocation task. Hung [3] models the leadership
network of a single district in Afghanistan (based on real data)
with 73 nodes and notes that recent organizational assignments
show that a single battalion operates in 4–7 districts and divides
into 3 and 4 platoons per 1 and 2 districts. This translates into
5–30 teams responsible for a network with 300–500 nodes.
We model the COIN domain as a two-player IBM problem,

which allows us to draw from the extensive influence
maximization literature. An IBM takes place on an undirected
graph G = (V , E). One player, the attacker, will attempt
to maximize the number of nodes supporting his cause on
the graph while the second player, the defender, will attempt
to minimize the attacker’s influence. Vertices represent local
leaders that each player can attempt to sway to their cause, while
edges represent the influence of one local leader on another.
We note that these leaders do not report to one another and
hence an undirected edge provides an apt representation of their
influence relationship. Specifically, each edge, e = (n, m), has
an associated probability, Pe, which dictates the chance that
leader n will influence leader m to side with n’s chosen player.
Since the graph is undirected, this is also the probability thatm
influences n to side with m’s chosen player. Only uninfluenced
nodes can be influenced.
In an IBM, the two players each choose a subset of nodes as

their pure strategies (Sa, Sd ⊆ V ), which we will also refer to
as actions. Each action is composed of nodes (also referred to as
‘sources’) where the allowable number of nodes is referred to
as the number of ‘resources’ a player has and is given for each
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Game-Theoretic Target Selection in Contagion-Based Domains 3

FIGURE 1. Example pure strategy for one player.

player (|Sa| = ra, |Sd| = rd). Figure 1 shows an example of a
pure strategy for one player as the selection of the two nodes,
D and F , filled in. The other player would similarly choose a
set of nodes on the same graph from which to begin spreading
his influence.
Each node in Sa∩Sd has a 50% chance of being influenced by

each player, while all other nodes in Sa support the attacker and
all other nodes in Sd support the defender. The influence then
propagates via a synchronized independent cascade, where at
time step t0 only the initial nodes have been influenced and at
t1 each edge incident to nodes in Sa ∪ Sd is ‘activated’ with
probability Pe. Uninfluenced nodes incident to activated edges
become supporters of the influencing node’s player. If a single
uninfluenced node is incident to activated edges from both
player’s nodes, the node has a 50% chance of being influenced
by each player. This process, which outlines a single stochastic
outcome, is detailed in Algorithm 1, which outputs the total
number of attacker-activated nodes for that particular sample.
This process is polynomial with respect to the network size,
since each edge will only be probabilistically activated a single
time at most.
For a given pair of pure strategies, the attacker’s payoff

is equal to the expected number of nodes influenced to the
attacker’s side and the defender’s payoff is the opposite of
the attacker’s payoff. We denote the function to calculate the
expected number of attacker-influenced nodes as σ (Sa, Sd).
Each player chooses a mixed strategy, ρa for the attacker
and ρd for the defender, over their pure strategies (subsets of
nodes of size ra or rd) to maximize their expected payoff.
At equilibrium, each player’s mixed strategy will be a best
response to the other player’s. The defender’s mixed strategy is
a policy by which COIN teams can randomize their deployment
each day/week/month, depending on the frequency of missions.
The focus of the rest of this work will be to develop optimal,
approximate and heuristic oracles that can be used in double
oracle algorithms to generate strategies for these IBMproblems.

4. DOUBLE ORACLEAPPROACH

The most commonly used approach for a zero-sum game is a
naïve Maximin strategy, shown inAlgorithm 2. InAlgorithm 2,
P is the defender’s expected payoff, C is the set of all column

Algorithm 1 Influence prop.: Sa , Sd , G = (N, E).

1: E∗ = ∅, Eactive = ∅
2: A ← {s|s ∈ Sa ∧ s /∈ Sd}, D ← {s|s /∈ Sa ∧ s ∈ Sd}
3: for {s|s ∈ Sa ∩ Sd} do
4: // randomly add s to one of the player’s sets
5: RandomAdd(s, A, D)
6: end for
7: Nnew = A ∪ D

8: while Nnew ̸= ∅ do
9: for {(u, v)|u ∈ Nnew,(u, v) /∈ E∗} do
10: // activate the edge based on its probability
11: Eactive.add(RandomActivate((u, v)))
12: E∗.add((u, v))
13: end for
14: Nnew = ∅
15: for {s|s /∈ A ∪ D, ∃(u, s) ∈ Eactive} do
16: Nnew.add(s)
17: // Add s to appropriate set
18: AddToSet(s, A, D)
19: end for
20: end while
21: return Sa

player actions iterated with c, Y is the set of all row player
actions iteratedwith y andu(y, c) is the utility for the rowplayer
when actions c and y are played. In our problem, the row player
(defender) has a utility equivalent to the opposite of the column
player’s (attacker’s), which is equivalent to the expectation of
the propagation process, σ (·). That is, u(y, c) = −σ (y, c).
The primary constraint is Constraint 1, which restricts P to
be no greater than the expected utility achieved by the row
player in the worst outcome. This linear program, however,
requires precalculating the payoffs for every pair of player
actions to instantiate all constraints before it can efficiently
solve for a Nash equilibrium. This naïve approach admits two
faults.

Algorithm 2Maximin Linear Program.

Maximize P

Subject to:

∀c ∈ C P ≤
∑

y∈Y

py · u(y, c) (1)

0 ≤ py ≤ 1, ∀y ∈ Y (2)
∑

y∈Y

py = 1 (3)

First, the payoff for a given pair of pure strategies in our
problem is computationally intractable to calculate accurately.
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4 J. Tsai et al.

As shown by Chen et al. [12, 20], calculating the analogous
expectation in a basic influence maximization game exactly is
#P -Hard. Since influence maximization is a special case of
IBM, it is trivial to show that calculating σ (·) exactly is also #P -
Hard. The standard method for estimating these expectations is
a Monte Carlo approach that was adapted for the IBM problem
by Budak et al. [10] and which we also adopt here. It involves
simulating the propagation process thousands of times to reach
an accurate estimate of the expected outcome. Although it runs
in time polynomial in the size of the graph and is able to achieve
arbitrarily accurate estimations, the thousands of simulation
trials required for accurate results causes this method to be
extremely slow in practice.
Secondly, the Maximin algorithm stores the entire payoff

matrix in memory, which can be prohibitive for large graphs.
For example, with 1000 nodes and 50 resources per player,
each player has

(1000
50

)
actions. To overcome similar memory

problems, double oracle algorithms have been proposed in the
past [6, 14] and form the basis for our work.
Double oracle algorithms for zero-sum games use aMaximin

linear program at the core, but the payoff matrix is grown
incrementally by two oracles. This process is shown in
Algorithm 3. We denote by D the set of defender actions
generated so far, and A is the set of attacker actions generated
so far. MaximinLP(D,A) solves for the equilibrium of the
game that only has the pure strategies in D and A and returns
ρd and ρa, which are the equilibrium defender and attacker
mixed strategies over D and A. DefenderOracle(·) solves the
defender’s ‘best-response problem’. That is, it generates a
defender action that is a best response against ρa among all
possible actions. This action is added to the set of available
pure strategies for the defender D. A similar procedure then
occurs for the attacker. Convergence occurs when neither best-
response oracle generates a pure strategy that is superior to the
given player’s current mixed strategy against the fixed opponent
mixed strategy. The number of attacker and defender actions in
the payoffmatrix varies depending on the speed of convergence,
but is generally much smaller than the full matrix. It has
been shown that, with two optimal best-response oracles, the
double oracle algorithm converges to the Maximin equilibrium
[26], although no guarantees are known regarding the time to
convergence.

Algorithm 3 Double Oracle Algorithm.
1: Initialize D with random defender allocations.
2: InitializeA with random attacker allocations.
3: repeat
4: (ρd , ρa) =MaximinLP(D,A)
5: D = D ∪ {DefenderOracle(ρa)}
6: A = A ∪ {AttackerOracle(ρd )}
7: until convergence
8: return (ρd , ρa)

TABLE 1. Example game’s full payoff matrix.

A B C

1 3, −3 −1, 1 2, −2
2 1, −1 2, −2 −2, 2

TABLE 2. Initial subgame.

C

1 2, −2

4.1. Double oracle: example

To illustrate the double oracle algorithm inmore detail, consider
the game described by the payoff matrix featured in Table 1.As
per standard game-theoretic notation, the row player’s available
actions are 1 and 2 and the column player’s available actions
include A, B and C. If the row player plays 1 and the column
player plays A, then the row player receives a payoff of 3 and
the column player a payoff of−3.Although this game could be
solved by a single Maximin run, we will describe the solution
procedure used by the double oracle algorithm to clarify the
process. Initially, each player’s actions are randomly seeded
with a single action from the complete action space of the
original game. Suppose the defender, the row player, is seeded
with action ‘1’ and the attacker, the column player, is seeded
with action ‘C’ as shown in Table 2. Then D = {1} and A
= {C}. This subgame is trivially solved using a Maximin linear
program that produces the optimal strategy for both players,
which is to simply play their only available action 100% of the
time (ρd = ρa = {1.0}).
Next the algorithm consults two oracles for the next action to

add to the subgame for each player. In this case,AttackerOracle
produces ‘B’ as the optimal action for the attacker to take
when the defender is playing a strategy of 100% ‘1’. The
DefenderOracle, in contrast, produces ‘1’ as the best response
to the current adversary strategy of 100% ‘C’and chooses to add
action ‘1’which already exists in the subgame. The subgame is
now composed of one action for the defender (D = {1}) and two
actions for the attacker (A = {C, B}).AMaximin solver is again
run to determine the optimal strategy for each player, producing
a new pure-strategy equilibrium (ρd = {1.0}, ρa = {0.0, 1.0}).
Both oracles are consulted again, with the AttackerOracle

again returning ‘B’as the optimal action to the current defender
strategy (play ‘1’100%), but the DefenderOracle now returning
action ‘2’ as the best response to the current attacker strategy
(play ‘B’ 100%). The subgame grows to the 2 × 2 matrix
shown in Table 3 and the Maximin linear program is again run
to solve it, producing new optimal strategies for each player
(ρd = { 47 , 37 }, ρa = { 47 , 37 }). Another query to each oracle
reveals that both players’ best responses are already included
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Game-Theoretic Target Selection in Contagion-Based Domains 5

TABLE 3. At convergence.

B C

1 −1, 1 2, −2
2 2, −2 −2, 2

in the subgame. At this point, the algorithm has converged and
the Maximin equilibrium strategies for both players in the full
game have been determined.
The payoff matrix generated at convergence is shown in

Table 3. Note that the attacker action ‘A’ was never added
to the game. Not only does this limit the size of the payoff
matrix stored in memory, but this also means that no payoffs
associatedwith action ‘A’need tobegenerated (recall that payoff
generation in our problem is #P -Hard).

4.2. Double oracle: approximation

Nowwe prove an approximate double oracle setup that admits a
quality guarantee.We denote the defender and attacker’s mixed
strategies at convergence as ρd and ρa. Also, we denote the
defender’s expected utility given a pair of mixed strategies as
ud(ρd, ρa). Assume that the defender’s oracle, DAR, is an α-
approximation of the optimal best-response oracle, DBR, so
that DAR(ρa) ≥ α · DBR(ρa). The following theorem is a
generalization of a similar result in Halvorson et al. [14].

Theorem 4.1. Let (ρd, ρa) be the output of the double oracle
algorithm using an approximate defender oracle and let
(ρ∗
d , ρ

∗
a ) be the optimal mixed strategies. Then ud(ρd, ρa) ≥

α · ud(ρ
∗
d , ρ

∗
a ).

Proof. Since we know DAR is an α-approximation,
ud(ρd, ρa) ≥ ud(DAR(ρa), ρa) ≥ α · ud(DBR(ρa), ρa). Since
(ρ∗
d , ρ

∗
a ) is a maximin solution, we know that ∀ρ ′

d, ρ
′
a:

ud(ρ
∗
d , ρ

′
a) ≥ ud(ρ

∗
d , ρ

∗
a ) ≥ ud(ρ

′
d, ρ

∗
a ). Thus, ud(DBR(ρa),

ρa) ≥ ud(ρ
∗
d , ρa) ≥ ud(ρ

∗
d , ρ

∗
a ), implying ud(ρd, ρa) ≥

α · ud(ρ
∗
d , ρ

∗
a ).

5. ORACLES

A major advantage of double oracle algorithms is the ability to
divide the problem into best-response components. This allows
for easily creating variations of algorithms to meet runtime and
quality needs by combining different oracles together. Here, we
present four oracles that we can combine to create a suite of
algorithms.

5.1. EXACT oracle

Solving for a best response in an IBM problem was shown
to be NP-Hard by Budak et al. [10], but an optimal oracle

may be useful when paired with an efficient second oracle,
given the approximation result just shown. The first oracle we
introduce is an optimal best-response oracle. Our oracle, which
we call EXACT , determines the best response by iterating
through the entire action set for a given player. For each
action, the expected payoff against the opponent’s strategy is
calculated, which requires n calculations of σ (·), where n is
the size of the support for the opponent’s mixed strategy. In
this oracle, σ (·) is evaluated via the Monte Carlo estimation
method, the benchmark technique in influence maximization.
This technique involves simulating the propagation process
n times, where n is generally 10 000–20 000, and using the
average propagation of the simulated trials as the estimate. The
ϵ-error of the Monte Carlo estimation exists in the Maximin
approach as well, but can be made arbitrarily small with
sufficient simulations [15].
This oracle can be used for both the defender and the attacker

to create an incremental, optimal algorithm that can potentially
be superior to Maximin because of the incremental approach.
However, the oracle will perform redundant calculations that
can cause it to run slower than Maximin when the equilibrium
strategies support size is very large.

5.2. APPROX oracle

Here we describe approximate oracles that draw from research
in influence maximization, competitive influence maximization
and IBM. Budak et al. [10] showed that the best-response
problem for the blocker (the defender, in our setting) is
submodular when both players share the same probability of
influencing across a given edge. Thus, a greedy hill-climbing
approach that provides the highest marginal gain in each
round provides a (1 − 1/e)-approximation. This is outlined
in Algorithm 4, where rd is given for the problem instance,
MCEst(·) is theMonte Carlo estimation of σ (·), ρa is the current
attacker mixed strategy, Action() retrieves a pure strategy, Sa
and Prob() retrieves a pure strategy’s associated probability. The
Lazy-Forward speed-up to the greedy algorithm introduced by
Leskovec et al. [16] to tackle influence maximization problems
is also implemented, but we do not show it in Algorithm 4 for
clarity.
For the maximizer’s best-response problem, we note that,

given a fixed blocker strategy, the best-response problem of
the maximizer in an IBM is exactly the best-response problem
of the last player in a competitive influence maximization from
Bharathi et al. [24], which they showed to be submodular. Thus,
the attacker’s best-response problem can also be approximated
with a greedy algorithmwith the same guarantees.These oracles
are referred to as APPROX.
By combining an APPROX oracle for the defender and an

EXACT oracle for the attacker, we can create an algorithm
that generates a strategy for the defender more efficiently than
the naive one and guarantees a reward within (1 − 1/e) of the
optimal strategy’s reward by Theorem 4.1. An algorithm with
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6 J. Tsai et al.

two APPROX oracles no longer admits quality guarantees, but
the iterative process still maintains the best-response reasoning
crucial to adversarial domains.

Algorithm 4APPROX -DefBR(ρa).
1: Sd = ∅
2: while |Sd | < rd do
3: for n ∈ (N − Sd) do
4: U(n) =

∑ρa .Size()
i=1 ρa .Prob(i) ·

5: MCEst(ρa .Action(i),Sd ∪ {n})
6: end for
7: n∗ = argmaxn∈N U(n)
8: BR = BR ∪ {n∗}
9: end while
10: return BR

5.3. LSMI oracle

We introduce our main heuristic oracle, LSMI, which is also
the name of the heuristic it is based on: Local Shortest-paths
for Multiple Influencers (LSMI(·)). This oracle uses APPROX
oracle’s Algorithm 4. However, LSMI(·) is used to replace the
MCEst(·) function and provides a fast, heuristic estimation of
the marginal gain from adding a node to the best response. The
heuristic is based on two assumptions: very low probability
paths between two nodes are unlikely to have an impact and
the highest probability path between two nodes estimates the
relative strength of the influence. The probability associated
with a path is defined asP = ∏

e Pe over all edges e on the path.
We then combine these heuristic influences from two players in
a novel, efficient way.
The twoheuristic assumptions have been applied successfully

for one-player influence maximization in various forms, one of
the most recent being Chen et al. [12]. As an application of the
first assumption, when calculating the influence of a node, they
only consider nodes reachable via a path with an associated
probability of at least some θ . As an application of the second
assumption, Chen et al. [12, 20] assume that each source will
only affect nodes via the highest probability path. To improve
the accuracy of this estimation, they disallow other sources
from being on the path since the closer source’s influence will
supersede that of the further source along the same path. We
use these ideas as well, but the approach of Chen et al. [12, 20]
to the critical step of combining these influences efficiently
relies on there being only one type of influence. In a two-player
situation such as ours, there are two probabilities associated
with each node, and the winning influencer depends not only
on the probability but on the distance to sources as well. This
ordering effect is a new issue that necessitates a novel approach
to influence estimation.
L-Eval(·), described inAlgorithm 6, is our new algorithm for

determining the expected influence of the local neighborhood

around a given node. LSMI(n, Sa, Sd) estimates the marginal
gain of n by finding the difference between calling L-Eval(·)
with and without n and replaces the MCEst(·) function in
Algorithm 4. For the defender oracle, instead of a call of
MCEst(Sa, Sd ∪ n):

LSMI(Sa, Sd, n) = L-Eval(V , Sa, Sd ∪ {n})
− L-Eval(V , Sa, Sd),

s.t. V = GetVerticesWithinθ(n).

GetVerticesWithinθ () is a modified Dijkstra’s algorithm that
measures path length by hop distance, tie-breaks with the
associated probabilities of the paths, and stores all nodes’
shortest hop distance and associated probability to the given
node. It does not add a new node to the search queue if the
probability on the path to the node falls below θ . This procedure
is outlined in more detail in Algorithm 5. The overall structure
remains identical to Dijkstra’s algorithm, but distances are now
measured with hop distance instead of summing the weights
on edges and a cut-off is implemented when the probability
on the path falls below θ . The probability on the path is
calculated via probDistanceTo(), which simply calculates the
product of probabilities on edges along the path from n to v.
Since the algorithm exactly mirrors that of Dijkstra’s algorithm,
the runtime attributes are identical.

Algorithm 5 GetVerticesWithinθ (n).
1: for v ∈ V do
2: hopDistanceTo[v] := infinity
3: probDistanceTo[v] := 0
4: Q.enqueue(v)
5: end for
6: hopDistanceTo[n] := 0
7: probDistanceTo[n] := 1
8:
9: while Q ̸= ∅ do
10: u := vertex inQ with smallest distance (by hopDistanceTo)
11: remove u fromQ

12: if hopDistanceTo[u] == infinity then
13: break
14: end if
15: for each neighbor v of u do
16: thop := hopDistanceTo[u] + 1
17: tprob := probDistanceTo[u] · p(u,v)

18: if thop ≤ hopDistanceTo[v] AND tprob > θ then
19: hopDistanceTo[v] := t

20: if tprob > probDistanceTo[v] then
21: probDistanceTo[v] := tprob

22: end if
23: end if
24: /* Reorder v in Queue, tie-break with probDistanceTo[]*/
25: decrease-key(v,Q)
26: end for
27: end while
28: return all v with hopDistanceTo[] less than infinity
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Game-Theoretic Target Selection in Contagion-Based Domains 7

FIGURE 2. Example network.

In L-Eval(·), V is the set of n’s local nodes and Sa/Sd are
the attacker/defender source sets. Owing to the addition of n,
we must recalculate the expected influence of each v ∈ V .
First, we determine all the nearby nodes that impact a given
v by calling GetVerticesWithinθ (v). Since only sources exert
influence, we intersect this set with the set of all sources and
compile them into a priority queue ordered from the lowest
hop distance to the greatest. We represent Pa and Pd by,
respectively, the probability is that the attacker and defender
successfully influences the given node. From the nearest source,
we aggregate the conditional probabilities in order. If the next
nearest source is an attacker source, then Pa is increased by
the probability that the new source succeeds, conditional on
the failure of all closer defender and attacker sources. The
probability that all closer sources failed is exactly Pa + Pd.
Here Pd remains unchanged. If the next nearest source is
a defender source, then a similar update is performed. The
algorithm iterates through all impacted nodes and returns the
total expected influence.
To illustrate the aggregation calculation, we reproduce the

graph from Fig. 1 again here in Fig. 2. Consider node h and
assume the adversary has chosen source f and the defender
has chosen source d. Since influence travels along edges in an
ordered fashion, the influence of f is only possible if d fails
to influence h, since d is closer in terms of the hop distance.
Thus, the probability that h is converted into an adversary
node is

(1− P(d,h)) · (P(f,g) · P(g,h)). (4)

Inwords, the probability is equal to the joint probability that d
fails and the influence fromf succeeds in influencing g and then
h thereafter.Note that if the defender had a second source further
away, it would be completely irrelevant, since only adversary-
influenced nodes contribute to the payoff determination.
Although the estimated marginal gain of LSMI can be

arbitrarily inaccurate, choosing the best action only requires
that the relative marginal gain of different nodes be accurate.
We show in the Experiments section that LSMI does a very good
job of this in practice as evidenced by the high reward achieved
by LSMI-based algorithms. The final algorithm for the LSMI
best-response oracle is shown in Algorithm 7.

Algorithm 6 L-Eval(V, Sa, Sd ).
1: Inf V alue = 0
2: for v ∈ (V − Sa − Sd) do
3: N = GetVerticesWithinθ(v) ∩ (Sa ∪ Sd)

4: /* Prioritize sources by lowest hop-distance to v*/
5: S =makePriorityQueue(N)
6: pa = 0, pd = 0
7: while S ̸= ∅ do
8: s = S.poll()
9: if (s ∈ Sa) then
10: pa = pa + (1− pa − pd)· Prob(s, v), pd = pd

11: else /* s must be in Sd */
12: pd = pd + (1− pa − pd)· Prob(s, v), pa = pa

13: end if
14: end while
15: Inf V alue = Inf V alue + pa

16: end for
17: return Inf V alue

Algorithm 7 LSMI-BR(ρa).
1: Sd = ∅
2: while |Sd | < rd do
3: for n ∈ (N − Sd) do
4: U(n) =

∑ρa .Size()
i=1 ρa .Prob(i) ·

5: LSMI(ρa .Action(i),Sd ∪ {n})
6: end for
7: n∗ = argmaxn∈N U(n)
8: BR = BR ∪ {n∗}
9: end while
10: return BR

5.4. PAGERANK oracle

PageRank is a popular algorithm to rank webpages [27], which
we adapt here due to its frequent use in influence maximization
as a benchmark heuristic. The underlying idea is to give each
node a rating that captures the power it has for spreading
influence that is based on its connectivity. For the purposes
of describing PageRank, we will refer to directed edges eu,v

and ev,u for every undirected edge between u and v. For each
edge eu,v , set a weight wu,v = Pe/Pv where Pv = ∑

e Pe

over all edges incident to v. The rating or ‘rank’ of a node
u, τu = ∑

v wu,v · τv for all non-source nodes v adjacent to u.
The exclusion of source nodes is performed because u cannot
spread its influence through a source node.
For our oracles, since the defender’s goal is to minimize the

attacker’s influence, the defender oracle will focus on nodes
incident to attacker sources Na = {n|n ∈ V ∧ ∃en,m, m ∈ Sa}.
Specifically, ordering the nodes ofNa by decreasing rank value,
the top rd nodes will be chosen as the best response. In the
attacker’s oracle phase, the attacker will simply choose the
nodes with the highest ranks. Although PAGERANK is very
efficient, we expect its quality to be low, since the attacker
oracle fails to account for the presence of a defender and the
defender oracle only searches through nodes directly incident
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8 J. Tsai et al.

TABLE 4. Algorithms evaluated.

Algo label Def. oracle Att. oracle Nodes R

DOEE EXACT EXACT 15 3
DOAE APPROX EXACT 20 3
DOAA APPROX APPROX 100 3

DOLE LSMI EXACT 20 3
DOLA LSMI APPROX 100–200 3
DOLL LSMI LSMI 450 20
DOLP LSMI PAGERANK 700 20

DOPE PAGERANK EXACT 40 3
DOPA PAGERANK APPROX 200–300 3
DOPL PAGERANK LSMI 1000+ 20
DOPP PAGERANK PAGERANK 1000+ 20

to the attacker’s source nodes.We will refer to oracles based on
this heuristic as PAGERANK.

6. EXPERIMENTS

In this section, we show experiments on both synthetic and
real-world leadership and social networks. We evaluate the
algorithms on scalability and solution quality. One advantage of
double oracle algorithms is the ease with which the oracles can
be changed to produce new variations of existing algorithms.
This allows us to simulate various attacker/defender best-
response strategies and test our heuristics’ performance more
thoroughly.
Ideally, we would report the performance of our mixed

strategy against an optimal best response as a worst-case
analysis. However, due to scalability issues with the EXACT
best-response oracle, rewards for larger graphs can only be
calculated against an approximate best response generated by
the APPROX oracle. Unless otherwise stated, each datapoint is
an average over 100 trials and the games created used contagion
probability on edges of 0.3, 20 000 Monte Carlo simulations
per estimation and an LSMI θ = 0.001. All experiments were
run on machines with CPLEX 12.2, 2.8GHz CPU and 4GB of
RAM.
In addition to the optimalMaximin algorithm,we also test the

set of double oracle algorithms listed in Table 4, where Nodes
and R(esources) indicate the approximate problem complexity
the algorithm can handle within 20min based on experiments
with scale-free graphs.

6.1. Leadership networks

In Hung [3], a leadership network was created based on real
data of a district in Afghanistan with seven village areas,
each with a few ‘village leaders’ with connections outside the
village and a cluster of ‘district leaders’ shown in the middle.

FIGURE 3. Afghanistan leadership network results. (a) Network
from Hung (2010) and (b) nodes in defender strategy.

We recreate the same network, shown in Fig. 3a and run our
algorithms on it. Although not shown, quality as measured
against anAPPROXattackerwas very similar for all algorithms.
Algorithms exceeding 20min are not shown.
Closer examination of defender strategies reveals a difference

in the oracles’approach. Since the PAGERANKdefender oracle
considers only attacker-adjacent nodes with the highest rank,
most of its strategies focus on two high-degree district leaders
(neither are maximal degree nodes) and on a regular member of
the highest population Village G. In this graph structure, where
sets of nodes are fully connected, this strategy works very well
because the attacker’s best response will often be the highest
degree district leader and a node in Village G. This approach
is more conservative than LSMI, which directly chooses the
attacker’s source nodes since the 50% chance of wiping out
an attacker source provides slightly higher utility. The attacker
oracles all select from the same set of four high-degree nodes.
Aside from the highest degree district leader and Village G
nodes, an additional high-degree village leader far fromVillage
G is also used. This result suggests that not only connectivity,
but also strategic spacing provided by our algorithms is a key
point for the maximizer’s target selection.
Experiments varying contagion probability, shown in Fig. 3b,

show LSMI defender oracle algorithms randomizing over many
more nodes at low contagion levels. This occurs because
the attacker’s initial set of nodes accounts for most of his
expected utility, encouraging randomization over many nodes.
PAGERANK ignores this since a given set of nodes is often
adjacent to all sets of attacker-chosen nodes, while LSMI
responds by matching the increased node use directly.
As noted previously, a battalion is responsible for 4–7

districts, so we create synthetic graphs with multiple copies of
a village structure (70 nodes each) and link all district leaders
together to create multi-district graphs. In our experiments, for
every district, each player is given three resources. Figure 4
shows runtime and solution quality against anAPPROXattacker
best response. Since we create the graphs one district at a time,
the graph sizes increase by 70 nodes at a time. The trend in
rewards is once again that LSMI defender oracle algorithms
very slightly outperform the others.All four algorithms scale to
real-world problem sizes.
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Game-Theoretic Target Selection in Contagion-Based Domains 9

FIGURE 4. Synthetic leadership network results. (a) Runtime and
(b) quality.

FIGURE 5. Scale-free, 8–20 nodes, 3 resources. (a) Runtime and (b)
quality.

6.2. Random scale-free graphs

Scale-free graphs1 have commonly been used as proxies for
real-world social networks because the distribution of node
degrees in many real-world networks have been observed to
follow a power law [28]. We conduct experiments on randomly
generated scale-free graphs of various sizes to illustrate both
the runtime scalability and quality of each algorithm in graphs
resembling social networks as opposed to leadership networks.
Figure 5 shows the results for small scale-free graphs of 8–

20 nodes with 3 resources for each player. The runtime graph
(Fig. 5a) shows only the algorithms that exceed 20min for
clarity. The remaining heuristic algorithms’ results all hug the
x-axis because they take minimal time for these graphs. As
would be expected, Maximin scales the most poorly and is only
able to handle graphs of up to 11 and 12 nodes. The approximate
algorithm, DOAE improves upon DOEE and can handle up to
16 and 17 nodes, but swapping out the APPROX oracle for the
very fast LSMI oracle does not improve runtime scalability very
noticeably.This is because although theLSMIoracle is orders of
magnitude faster than theAPPROX oracle, the EXACT attacker
oracle’s runtime eclipses both of them,making the improvement
irrelevant.
In Fig. 5b, we show the reward obtained by the defenderwhen

using the strategies generated against an Exact attacker’s best

1The networks are built using the Barabási–Albert network-building
algorithm and will be referred to as scale-free networks.

FIGURE 6. Scale-free, 20–100 nodes, 3 resources. (a) Runtime and
(b) quality.

response as described earlier. The key point is that the majority
of rewards are indistinguishable from the optimal algorithms.
The DOLL algorithm begins to diverge slightly when the graph
nears 100 nodes, but the major exceptions are the algorithms
featuring PAGERANK defender oracles. Interestingly, DOLP,
which uses LSMI for the defender and PAGERANK for the
attacker still generates high rewards.
Figure 6 shows runtime and quality for larger scale-free

graphs of 20–100 nodes with 3 resources for each player.As can
be seen, the algorithms featuring the APPROX oracle (DOAA,
DOLA) begin to exceed our 20-min cut-off near 100 nodes,
while the remaining heuristic algorithms continue to hug the
x-axis because even these games are completed inminimal time.
As discussed previously, due to the inefficiency of the EXACT
oracle, we use an APPROX best response to calculate a more
conservative reward value. Figure 6b again shows algorithms
withPAGERANKdefender oracles performingnoticeablymore
poorly than the other algorithms.DOLP is again very close to the
top performers. Note that while this may be due to theAPPROX
best response being used instead of an EXACT best response, it
is very unlikely than an attacker could perform any better given
the hardness of the best-response problem.

7. STRATEGYANALYSIS

In addition, three types of variationswere explored on scale-free
networks in more depth. First, we varied the size of the graph
and kept all other parameters constant. Second, we varied the
average contagion probability in the graphs at three separate
graph sizes. Finally, we varied the standard deviation of the
contagion probability in the graphs and again tested these at
three separate graph sizes.All experiments featured a randomly
generated scale-free graph, 10 resources per player (Sd, Sa =
10) and contagion probabilities on edges that were drawn from
a normal distribution. Scale-free graphs were chosen due to
their widespread use as proxies for general social networks
and were generated according to the principle of ‘preferential
attachment’ as introduced by Barabasi and Albert [29]. Our
particular implementation adds edges between existing vertices
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10 J. Tsai et al.

FIGURE 7. Preliminary test, r = 10, avg. = 0.3, s.d. = 0.1.

and newly added vertices with a probability of P = (deg(v) +
1)/(|E|+ |V |).2 100 trials were run for every data point shown.
Figure 7 shows a preliminary test that was conducted to

provide a benchmark for the quality results. It shows the reward
for the defender when each of the four algorithms is used as well
as when no defender is present as well for graphs of size 80, 160
and 240 and with the average contagion probability set to 0.3,
0.5 and 0.7.Again, the reward reported is the reward achievable
by an adversary that best responds to our algorithm’s generated
defender strategy by calculating the approximate best response
via the algorithm proposed by Budak et al. [10]. As mentioned,
the graph sizes tested were limited to 260 nodes because for
larger graphs even calculating the approximate best response
outlined above begins to take longer than 20min as well.
As can be seen, all of the algorithms provide at least a 30–

40% improvement in reward obtained as opposed to having no
defender present across all of the cases tested. Since this was
intended as a preliminary justification for the algorithms, we
will provide more in-depth analysis of the solution quality of
the algorithms in the following subsections.

7.1. Graph size scale-up

The first set of experiments explored the impact of scaling up
the size of the graph alone. Specifically, the more efficient four
algorithms (all combinations of the LSMI and PAGERANK
oracles) were run on randomly generated scale-free graphs
with 80–260 nodes in increments of 20, with 10 resources
and contagion probabilities drawn from a normal distribution
N (0.3, 0.1). Graph sizes were limited to 260 nodes because
the adversary best-response technique used to determine the
defender’s reward became too cumbersome for larger graphs.
Figure 8a shows the impact on runtime as the graph size is

scaled up. As can be seen, the solution technique that features
two LSMI oracles (DOLL) requires the longest run time at

2http://jung.sourceforge.net/doc/api/edu/uci/ics/jung/algorithms/
generators/random/BarabasiAlbertGenerator.html.

FIGURE 8. Scale-up results, r = 10, avg. = 0.3, s.d. = 0.1. (a)
Runtime and (b) quality.

40–50 s for all of the game sizes tested. Interestingly, there did
not appear to be a consistent increase in runtime aswas observed
in the other three algorithms (each of which had at least one
PAGERANK oracle). This is due to the fact that the runtime
depends on the size of the problem but also on the ability of
the oracles to find new, higher-quality pure strategies to add to
the subgame being solved. DOLL features two highly adaptive
LSMI oracles and, as evidenced, tends to generate many more
actions for the smaller graph sizes. Thus, although the graphs
get larger, fewer iterations are used, causing minimal runtime
increase as the graph size is increased.
The other three algorithmsweremuch faster across the board,

all requiring less than 30 s with a consistent trend as the graph
size increases. DOPL requires more time than DOLP because
of the fact that the defender PAGERANK oracle explicitly
adapts to the attacker’s strategy (only uses nodes adjacent to
attacker nodes), while the attacker PAGERANK oracle does
not. Previous work explored scaling to larger graphs with more
resources, but since this is not the focus of our work, we refer
the interested reader to Tsai et al. [30].
Figure 8b shows the impact on solution quality as the graph

size is scaled up. Unsurprisingly, as the size of the graph
increases, it becomes increasingly difficult for the defender to
block the adversary’s influence spread and the defender receives
a correspondingly lower reward.Again, we also observe a large
difference between algorithms that use an LSMI oracle for the
defender as opposed to a PAGERANK oracle for the defender,
with the latter providing much lower rewards. This is expected,
due to the higher sophistication of the LSMI defender oracle as
was noted earlier.
Figure 9a shows the final number of actions in the defender’s

action set as the size of the graph is increased. The action set
is defined as the number of actions available to the defender in
the CoreLP phase of the double oracle algorithm and is exactly
the number of new best responses that have been found by the
defender oracle. In theworst case, thiswould include all possible
actions in the game, but as can be seen is generally far smaller,
making the problem much more tractable. The attacker’s action
set size was always extremely similar if not identical to the
defender’s action set size.
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Game-Theoretic Target Selection in Contagion-Based Domains 11

FIGURE 9. Scale-up results, r = 10, avg. = 0.3, s.d. = 0.1. (a)
Action set size and (b) support set size.

Figure 9b shows a similar metric and features the number
of actions in the support set of the final defender strategy. The
support set is the set of actions that have non-zero probability in
the finalmixed strategy.Again, the final attacker support set size
was always extremely similar if not identical to the defender’s.
As can be seen, both the action set and the support set sizes are

much larger with the DOLL algorithm than for any of the other
algorithms. This is due to the sophistication of the LSMI oracles
as opposed to thePAGERANKoracle.ThePAGERANKoracles
converge extremely quickly to a small set of actions and often do
not generate newactions in response to newadversary strategies.
This is especially true for the PAGERANKattacker oracle, since
the defender oracle actually chooses nodes directly adjacent to
the attacker. Thus, even when only one PAGERANK oracle
is used, the algorithm overall converges quickly. The DOLL
algorithm iterates many more times than algorithms featuring
the PAGERANK oracle, leading to the previous runtime result
with DOLL being far slower than the other algorithms.
Furthermore, the trends seen in both Fig. 9a and b show the

size of the final action set and support set decreasing as the
graph size is increased. This is due to the fact that as the graph
grows larger, very few actions are useful for the defender to
use to defend against the spread of the attacker’s influence. For
the attacker, randomization becomes less essential for the same
reason.Thus, both players converge to a very small set of actions
for the final mixed strategy.

7.2. Contagion probability: average

To explore the impact of changing the contagion probabilities
on the four algorithms, we tested three different contagion
probability averages for three separate graph sizes. Specifically,
we ran all four algorithms with the contagion probabilities
drawn from normal distributions N (0.3, 0.1), N (0.5, 0.1) and
N (0.7, 0.1). The graph sizes tested were 80, 160 and 240 node
random scale-free graphs with 10 resources allowed per player.
We measured the same four metrics as in the previous section:
runtime, solution quality, action set size and support set size.
Figure 10a shows the results pertaining to runtime.The x-axis

is divided into three sets of three bars each. Each set represents
one setting for the contagion probability average (0.3, 0.5, 0.7),

FIGURE 10. Contagion probability average results, s.d. = 0.1. (a)
Runtime and (b) quality.

FIGURE 11. Contagion probability average results, s.d. = 0.1. (a)
Action set size and (b) support set size.

while each bar represents the runtime result for one algorithm.
At averages of 0.5 and 0.7, consistent trends can be seen, with
larger graphs taking longer and higher probabilities leading
to longer runtimes for algorithms with LSMI oracles. This
is because LSMI oracles speed up heuristic estimation by
calculatingonly highprobability influences, butwhen contagion
probabilities are higher, this leads tomanymore nodes thatmust
be processed by the algorithm.
For the case of 0.3, however, the trend is not consistent

for the DOLL algorithm. Experiments suggest that, with low
contagion probabilities, two LSMI oracles continually find new
best responses to each other’s strategies. This occurs because, at
low contagion probabilities, different parts of the graph interact
minimally and the attacker is able to move to ‘new’ nodes and
entirely avoid the defender, resulting in a cat-and-mouse game
that requires many more iterations to converge than when a
PAGERANK oracle is used.
Figure 10b shows the reward for the defender using the same

approximate best-response technique described previously.
Unsurprisingly, larger graphs lead to a lower reward for the
defender because it is harder to defend. Higher contagion
probabilities also result in lower defender rewards for the same
reason.
Aswe noted in the scale-up experiments, larger graphs lead to

fewer actions in the action set as well as the final support set, as
shown in Fig. 11a and b. As mentioned, at the lowest contagion
probability tested (0.3), the action and support set sizes are very
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FIGURE 12. Contagion probability s.d. results, avg. = 0.3.

large for DOLL, causing very high runtimes due to the many
iterations required to generate the observed action sets.

7.3. Contagion probability: standard deviation

Nextwe tested variations of the standard deviation of the normal
distribution that the contagion probabilities on edges are drawn
from. Specifically, we ran all four algorithmswith the contagion
probabilities drawn from normal distributions N (0.3, 0.0),
N (0.3, 0.05), N (0.3, 0.1) and N (0.3, 0.15). These results,
however, did not show statistically significant differences in
the results when the standard deviation was changed under
the particular parameter settings we tested. We only show the
runtime results in Fig. 12 to support this claim, but the quality,
action set size and support set size results all looked similarly
homogeneous across the different standard deviations tested.

8. CONCLUSION

With increasingly informative data about interpersonal con-
nections, principled methods can finally be applied to inform
strategic interactions in social networks. Our work combines
recent research in IBM, operations research and game-theoretic
resource allocation to provide the first set of solution techniques
for a novel class of security games with contagious actions.
Experiments on real-world leadership and scale-free graphs
reveal that a simple PAGERANK oracle can provide high qual-
ity solutions for graphs with clusters of highly interconnected
nodes, whereas more sophisticated techniques can be very ben-
eficial in sparsely connected graphs. The methods used herein
are a first step into a new area of research in game-theoretic
security with wide-ranging applications.

9. FUTURE DIRECTIONS

This type of maximization/mitigation scenario can be used
to model a number of other domains that we hope to apply
them to. For example, anti-vaccination groups have become
a serious issue for health organizations to address [31]. By

modeling the interaction as an adversarial information diffusion
problem, the techniques here can help health organizations
mitigate the impact of anti-vaccination propaganda. In political
campaigns, candidates often attempt to disseminate negative
information about their opponents to sway votes against them.
Again, we can model this scenario with one party attempting
to maximize the spread of this information while another
party attempts to block the spread by disseminating its own
news (e.g. their own negative propaganda, positive spin on the
negative news, bigger news). In addition to the open theoretical
questions for the existing model and algorithms such as runtime
and quality guarantees, these new domains introduce novel
challenges as we improve the fidelity of our models to fit these
problems.
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