Implicit Learning Out of the Lab: Language and Music

Patrick Rebuschat (p.rebuschat@lancaster.ac.uk)
Department of Linguistics and English Language
Lancaster University, Lancaster, United Kingdom

Morten H. Christiansen (christiansen@cornell.edu)
Department of Psychology, Cornell University
Ithaca, NY, USA

Clément François (cfrancois@idibell.cat)
Daniele Schön (daniele.schon@incm.cnrs-mrs.fr)
INSERM U 1106, Institut de Neuroscience des Systèmes
Aix-Marseille Université, Marseille, France

Shan Jiang (jiangs988@126.com)
School of Social Administration, Shanghai University of
Political Science and Law, Shanghai, China

Jennifer B. Misyak (jennifer.misyak@wbs.ac.uk)
Behavioural Science Group, Warwick Business School
University of Warwick, Coventry, United Kingdom

Martin Rohrmeier (mrl@mit.edu)
Department of Linguistics and Philosophy, Massachusetts
Institute of Technology, Cambridge, MA, USA

Zoltan Dienes (dienes@sussex.ac.uk)
School of Psychology, University of Sussex
Brighton, United Kingdom

Xiuyan Guo (xyguo@psy.ecnu.edu.cn)
Shanghai Key Laboratory of Magnetic Resonance and
School of Psychology and Cognitive Science, East China
Normal University, Shanghai, China

Feifei Li (lifeifei1206@163.com)
School of Psychology and Cognitive Science, East China
Normal University, Shanghai, China

Richard Widdess (rw4@soas.ac.uk)
Department of Music, School of Oriental and African
Studies, University of London, United Kingdom

Keywords: Implicit learning; statistical learning; explicit
learning; music cognition; language acquisition.

Goals and Scope

Implicit learning, essentially the ability to acquire
unconscious (implicit) knowledge, is a fundamental aspect
of human cognition. This symposium focuses on the
acquisition of two cognitive systems that are widely
regarded as prime examples of implicit learning “in the real
world”, namely language and music (see e.g. Rebuschat et
al., 2011; Rohrmeier & Rebuschat, 2012). This symposium
brings together leading researchers from across the
cognitive sciences (psychology, linguistics, cognitive
neuroscience, computer science, and musicology) in order to
discuss current trends in implicit learning research, to
identify the progress made in recent years, and to outline
future directions to take, both in terms of topics and novel
methodologies. The symposium will consist of five talks, followed by a
brief general discussion. Each talk approaches the
symposium topic from a highly innovative and
interdisciplinary angle. Christiansen and Misyak focus on
individual differences in implicit statistical learning and language
and music cognition, respectively. These last two studies reflect a
particularly important trend in implicit learning research
towards the use of more ecologically-valid stimuli. In
addition to introducing novel and exciting subject areas, the
research discussed in this symposium also reflects the strong
tendency, within cognitive science, for methodological
diversification. The talks will discuss data from behavioral
and neurophysiological experiments as well as results of
computational modeling.

Morten H. Christiansen and Jennifer B. Misyak
Individual differences in implicit statistical
learning and language

Over the past decade, implicit learning under the guise of
statistical learning has emerged as an important
experimental paradigm with which to study mechanisms
involving language acquisition. Although few empirical
studies have directly linked variation across statistical
learning and language, it is generally assumed that greater
sensitivity to statistical structure leads to better language
performance. Here, we report the results of studies
investigating the relationship of individual differences in
statistical learning of adjacent and nonadjacent
dependencies to variations in the processing of local and
nonlocal dependencies in natural language. Together, the
results indicate that individual differences in statistical
learning are positively related to variations in language
processing. However, the complexity of the pattern of
terrelations suggests that future developmental and adult
work on implicit statistical learning must incorporate careful
attention to a diversity of natural dependency-structures to
establish the proper relationship between adjacent and
nonadjacent manifestations of statistical learning and the

103
extent to which they map onto similar structures in language.

Patrick Rebuschat

Implicit and explicit learning of L2 syntax
First language acquisition is generally characterized as a process where most learning proceeds implicitly, i.e. incidentally and in absence of awareness of what was learned. At the same time, however, there is considerable debate as to whether implicit learning plays a similarly important role in the case of adult second language (L2) acquisition. In this talk, I will review a series of experiments that investigated the implicit and explicit learning of L2 syntax by means of an artificial language paradigm. This research addressed questions such as the following: Is there implicit learning in the case of L2 acquisition? If so, how is implicit knowledge of language represented in the mind (rules, patterns, chunks...)? How do task instructions affect the acquisition of implicit and explicit knowledge? Is there an implicit-explicit interface? And what is the role of individual differences (e.g. working memory capacity), in the implicit and explicit learning of languages?

Zoltan Dienes, Xiuyan Guo, Shan Jiang, and Feifei Li

Implicit learning of symmetries in tonal language
Implicit learning research has identified a number of structures that people can unconsciously learn, including chunks and fixed patterns of repetition. Language and music appear to involve structures more complex, indeed higher than finite state, for example symmetry structures that are simply generated by recursive rules (e.g. centre embedded, cross-serial dependency structures). The implicit learning of such structures presents an interesting challenge to existing models of implicit learning, such as the Simple Recurrent Network (SRN). We build on our earlier work in music and movement, by looking at symmetries in the tonal structure of Chinese poetry. We show that people can acquire unconscious knowledge of both cross-serial dependencies and centre embeddings in tonal poetry, with the former being easier than the latter. We also show that people can generalise their unconscious knowledge from being trained on strings of a certain length to test strings of a different length, indicating apparent learning of the symmetry itself rather than chunks or fixed length associations. We also show the SRN can model many of the details of this learning, exploring whether the SRN is more than a graded finite state machine.

Clément François and Daniele Schön

Implicit learning of linguistic structures and the effect of musical practice
Both speech and music involve sequences of sounds ordered in time according to complex rules. The acquisition of both language and music require learners to engage several cognitive functions and notably the ability to sequence sound patterns. There is increasing evidence showing that the statistical regularities found in the input can play a important role in the implicit acquisition of several linguistic and musical structures. We previously showed that combining music and language into song can facilitate speech segmentation in implicit learning paradigms (Schön et al., 2008). Moreover, we recently conducted a set of experiments with adults and children showing that musical practice directly affects sensitivity to statistical regularities in speech both at the neural and behavioral levels (François & Schön, 2011; François et al., 2012). Interestingly, our results seem to show that musical training and expertise have effects on brain plasticity that may go beyond primary auditory regions. These results also confirm that neurophysiological measures are more robust and sensitive than behavior to study implicit statistical learning processes.

Martin Rohrmeier and Richard Widdess

Implicit learning of musical grammar: The acquisition of North Indian music
Recent years have witnessed an increasing interest in the implicit and statistical learning of music (see Rohrmeier & Rebuschat, 2012, for a review). Despite this interest, only few studies employed stimuli that resemble actual musical systems more closely, and only little research has been carried out on the acquisition of non-Western music. In this paper, we present the findings of a study that addressed this gap. The study focused on the implicit learning of modal melodic features in traditional North Indian music by Western learners who were unfamiliar with this musical system. Participants were trained on the ālāp (introduction) section of either the rāga Toṛī and Multānī and tested on novel excerpts from (later) jōr sections of both rāgas featuring five distinct melodic features. Three of the five features were melodically distinctive of either rāga, whereas two were only distinctive based on other than mere pitch sequence features (for instance, emphasis). Findings indicated that Western participants unfamiliar with Indian music learned to distinguish features of either rāga without intending to and after a very short exposure period. These results confirm that implicit learning constitutes a powerful mechanism that plays a fundamental role in the acquisition of highly complex, ecologically-valid musical stimuli.

Moderators:

Patrick Rebuschat and Martin Rohrmeier

References