On existence and uniqueness of the carrying simplex for competitive dynamical systems†

Morris W. Hirsch*

University of California, Berkeley University of Wisconsin, Madison

(Received 2 August 2007; final version received 19 January 2008)

Certain dynamical models of competition are shown to have a unique invariant hypersurface \(\Sigma_1 \), having simple geometry and topology, such that every non-zero tractory is asymptotic to a trajectory in \(\Sigma_1 \).

Keywords: dynamical systems, competition, population models, carrying simplex

Introduction

Consider a system of \(n \) competing species whose states are characterized by vectors in the closed positive cone \(K = [0, \infty)^n \subset \mathbb{R}^n \). When time is discrete, the development of the system is given by a continuous map \(T : K \to K \). When time is continuous, the development is governed by a periodic system of differential equations \(\dot{x} = F(t, x) \equiv F(t + 1, x) \). In this case, \(T \) denotes the Poincaré map.

For discrete time, the trajectory of a state \(x \) is the sequence \(\{ T^k x \} \), also denoted by \(\{ x(k) \} \), where \(k \) varies over the set \(\mathbb{N} \) of non-negative integers. In the case of an autonomous differential equation (i.e., \(F \) is independent of \(t \)), the trajectory of \(x \) is the solution curve through \(x \), denoted by \(T^t x \) or \(x(t) \), where \(t \in [0, \infty) \). In both cases, the limit set \(\omega(x) \) is the set of limit points of sequences \(x(t_k) \) where \(t_k \to \infty \).

In order to exclude spontaneous generation, we assume \(T_i(x) = 0 \) when \(x_i = 0 \). Thus, there are functions \(G_i : K \to [0, \infty) \), assumed continuous, such that

\[
T_i(x) = x_i G_i(x), \quad (x \in K, \quad i = 1, \ldots, n). \tag{1}
\]

For continuous time, we assume that the differential equation is a system of having the form \(\dot{x}_i = x_i G_i(t, x) \). If \(x_i \) is interpreted as the size of species \(i \), then \(G_i(x) \) is its per capita growth rate.

†Dedicated to Professor Hal Smith on the occasion of his 60th birthday.
*Email: mwhirsch@chorus.net

ISSN 1751-3758 print/ISSN 1751-3766 online
© 2008 Taylor & Francis
DOI: 10.1080/17513750801939236
http://www.informaworld.com
We take ‘competition’ to mean that increasing any one species does not tend to increase the \(\textit{per capita} \) growth rate of any other species, conventionally modelled by the assumption
\[
\frac{\partial G_i}{\partial x_j} \leq 0, \quad (i \neq j).
\]

A \textit{carrying simplex} for the map \(T \) is a compact invariant hypersurface \(\Sigma \subset K \) such that every trajectory except the origin is asymptotic with a trajectory in \(\Sigma \), and \(\Sigma \) is unordered for the standard vector order in \(K \). In the case of an autonomous differential equation, we require that \(\Sigma \) be invariant under the maps \(T^t \) for all \(t \geq 0 \). Some maps have no carrying simplices, others have infinitely many. Our main results give conditions guaranteeing a unique carrying simplex.

\textbf{Terminology}

A set \(Y \subset K \) is \textit{positively invariant} under a map or an autonomous differential equation if it contains the trajectories of all its points, so that \(T^tY \subset Y \) for all \(t \geq 0 \) (here, \(t \in \mathbb{N} \) or \([0, \infty) \) as appropriate). We call \(Y \) \textit{invariant} if \(T^tY = Y \) for all \(t \geq 0 \).

If \(S \) is a differentiable map, its matrix of partial derivatives matrix at \(p \) is denoted by \(S'(p) \).

The geometry of \(K \) plays an important role. For each subset \(I \subset \{1, \ldots, n\} \), the \(I \)th facet of \(K \) is
\[
K_I = \{ x \in K : x_j = 0 \iff j \notin I \}.
\]
Thus, \(K_{\{1\}} \) is the \(i \)th positive coordinate axis. A facet is \textit{proper} if it lies in the boundary of \(K \), meaning \(I \neq \{0\} \). The intersection of facets is a facet: \(K_I \cap K_J = K_{I \cup J} \). The boundary of \(K \) in \(\mathbb{R}^n \), denoted by \(\delta K \), is the union of the proper facets. Each \(x \in K \setminus \{0\} \) belongs to the unique facet \(K_{I(x)} = \{ i : x_i > 0 \} \).

For each \(n \times n \) matrix \(A \) and non-empty \(I \subset \{1, \ldots, n\} \), we define the principal submatrix
\[
A_I := [A_{ij}]_{i,j \in I}.
\]

The \textit{vector order} in \(\mathbb{R}^n \) is the relation defined by \(x \succeq y \iff x - y \in K \). We write \(x \succ y \) if also \(x \neq y \). For each set \(I \subset \{1, \ldots, n\} \), we write \(x \succ_I y \) if \(x, y \in K_I \) and \(x \succeq y \), and \(x \succ_i y \) if also \(x_i > y_i \) for all \(i \in I \). The reverse relations are denoted by \(\preceq \), \(\prec \) and so forth.

The \textit{closed order interval} defined by \(a, b \in \mathbb{R}^n \) is
\[
[a, b] := \{ x \in \mathbb{R}^n : a \leq x \leq b \}.
\]

\textbf{Carrying simplices}

A \textit{carrying simplex} is a set \(\Sigma \subset K \setminus \{0\} \) having the following properties:

\begin{enumerate}
 \item[(CS1)] \(\Sigma \) is compact and invariant.
 \item[(CS2)] For every \(x \in K \setminus \{0\} \), the trajectory of \(x \) is asymptotic with some \(y \in \Sigma \), i.e., \(\lim_{t \to \infty} |T^t x - T^t y| = 0 \).
 \item[(CS3)] \(\Sigma \) is unordered: if \(x, y \in \Sigma \) and \(x \succeq y \), then \(x = y \).
\end{enumerate}

It follows that each line in \(K \) through the origin meets \(\Sigma \) in a unique point. Therefore, \(\Sigma \) is mapped homeomorphically onto the unit \((n-1)\)-simplex
\[
\Delta^{n-1} := \left\{ x \in K : \sum_i x_i = 1 \right\}
\]
by the radial projection \(x \mapsto x / (\sum_i x_i) \).
Long-term dynamical properties of trajectories are accurately reflected by the dynamics in Σ by (CS1) and (CS2), and (CS3) means that Σ has simple topology and geometry. The existence of a carrying simplex has significant implications for limit sets $\omega(x)$:

- If $x > 0$ then $\omega(x) \subset \Sigma$, a consequence of (CS2). In particular, Σ contains all non-trivial fixed points and periodic orbits.
- If $a, b \in K$ are distinct limit points of respective states $x, y \geq 0$ (possibly the same state), then there exist i, j such that $a_i > b_i, a_j < b_j$; this follows from (CS3). Thus, either $\omega(x) = \omega(y)$, or else there exist i, j such that
 \[
 \limsup_{t \to \infty} x_i(t) - y_i(t) > 0, \quad \liminf_{t \to \infty} x_j(t) - y_j(t) < 0.
 \]

In many cases, Σ is the global attractor for the dynamics in $K \setminus \{0\}$, meaning that as t goes to infinity, the distance from $x(t)$ to Σ goes to zero uniformly for x in any given compact subset of $K \setminus \{0\}$. This implies [29] that there is a continuous function $V : K \setminus \{0\} \to [0, \infty)$ such that if $x \neq 0$ then

- $V(x) = 0 \iff x \in \Sigma$,
- $V(x(t)) < V(x) \iff x \notin \Sigma$,
- $\lim_{t \to \infty} V(x(t)) = 0$.

We can think of V as an ‘asymptotic conservation law’. While there are many such functions for any carrying simplex, it is rarely possible to find a formula for any of them.

Before stating results we give two simple examples for $n = 1$:

Example 1 If T is the time-one map for the flow defined by the logistic differential equation

\[
\dot{x} = rx(\sigma - x), \quad r, \sigma > 0, \quad (x \geq 0),
\]

the carrying simplex is just the classical carrying capacity σ. Here, one can define $V(x) = |x - \sigma|$ for $x > 0$.

Example 2 Consider the map

\[
T : [0, \infty) \to [0, \infty), \quad Tx = xe^{b-ax}, \quad b, a > 0, \quad x \in [0, \infty). \tag{2}
\]

Note that

\[
T'(x) = (1 - x)e^{b-ax}, \quad T'(b/a) = 1 - b.
\]

If there is a carrying simplex, it has to be the unique positive fixed point b/a, in which case $\lim_{k \to \infty} T^k x = b/a$ for all $x > 0$.

If $b \leq 2$, then b/a is the carrying simplex. See P. Cull, Local and global stability for population models, Biol. Cybern. Vol. 54 (1986), pp. 141–149, Theorem 2.

If $b > 2$, there is no carrying simplex. For then $|T'(b/a)| > 1$, making b/a a locally repelling fixed point. The only way the trajectory of $y \neq b/a$ can converge to b/a is for $T^j y = b/a$ for some $j > 0$. The set of such points y is nowhere dense because T is a non-constant analytic function; hence, there is no carrying simplex. For sufficiently large b, the dynamics is chaotic.

Example 5 is an n-dimensional generalization of Equation (2).
We say that T is strictly sublinear in a set $X \subset K$ if the following holds: $x \in X$ and $0 < \lambda < 1$ imply $\lambda x \in X$ and
\[\lambda T(x) < T(\lambda x), \quad (x \in X \setminus 0). \] (3)

Thus, the restricted map $T|X$ exhibits what economists call ‘decreasing returns to scale.’

A state x majorizes a state y if $x > y$, and x strictly majorizes y if $x_i > 0$ implies $x_i > y_i$.

The map $T : K \to K$ is strictly retrotone in a subset $X \subset K$ if for all $x, y \in X$ we have
\[Tx \text{ majorizes } Ty \implies x \text{ strictly majorizes } y. \]

Equivalently:
\[x, y \in X \cap K_1 \text{ and } Tx > Ty \implies x \gg_1 y. \]

The origin is a repellor if $T^{-1}(0) = 0$ and there exists $\delta > 0$ and an open neighbourhood $W \subset K$ of the origin such that $\lim \inf_{k \to \infty} |T^k x| \geq \delta$ uniformly in compact subsets of $W \setminus \{0\}$.

If in addition there is a global attractor Γ, as will be generally assumed, then Γ contains a global attractor Γ_0 for $T|K\setminus\{0\}$.

We will assume that T given in Equation (1) has the following properties:

(C0) $T^{-1}(0) = 0$ and $G_1(0) > 1$.

The first condition means that no non-trivial population dies out in finite time. The second means that small populations increase.

(C1) There is a global attractor Γ containing a neighbourhood of 0.

Together with condition (C0) this implies that there is a global attractor $\Gamma_0 \subset \Gamma$ for $T|K\setminus\{0\}$.

The connected component of the origin in $K\setminus\Gamma_0$ is the repellor basin $B(0)$.

(C2) T is strictly sublinear in a neighbourhood of Γ.

This holds when $0 < \lambda < 1 \implies G(x) < G(\lambda x)$.

(C3) T is strictly retrotone in a neighbourhood of the global attractor.

A similar property was introduced by Smith [25].

Denote the set of boundary points of Γ in K by $\partial_K \Gamma$.

Theorem 1 When conditions (C0)–(C3) hold, the unique carrying simplex is $\Sigma = \partial_K \Gamma = \partial_K B(0)$, and Σ is the global attractor for $T|K\setminus\{0\}$.

The proof will appear elsewhere.

The same hypotheses yield further information. It turns out that if $T|\Gamma$ is locally injective (which Smith assumed), it is a homeomorphism of Γ, and in any case the following condition holds:

(C4) The restriction of T to each positive coordinate axis $K_{[1]}^0$ has a globally attracting fixed point $q_{[i]}$.

We call $q_{[i]}$ an axial fixed point. Denoting its ith coordinate by $q_i > 0$, we set
\[q := (q_1, \ldots, q_n) = \sum_i q_{[i]}. \]

Smith [29] shows that conditions (C3) and (C4) imply condition (C1) with $\Gamma \subset [0, q]$. In many cases, the easiest way to establish a global attractor is to compute the axial fixed points and apply Smith’s result.

The following condition implies condition (C3) for maps T having Form (1) when G is C^1:

(C5) If $x \in K\setminus\{0\}$, the matrix $[G'(x)]_{[i]}$ has strictly negative entries.
For \(d \in \mathbb{R}^n \), we denote the diagonal matrix \(D \) with diagonal entries \(D_{ii} := d_i \) by \([d] \text{ diag}\) and also by \([d_i] \text{ diag}\). The \(n \times n \) identity matrix is denoted by \(I \).

A computation shows that

\[
T'(x) = [G(x)] \text{ diag} + [x] \text{ diag} \frac{d}{dx} G'(x).
\]

When \(x \) is such that all \(G_i(x) > 0 \), this can be written as

\[
T'(x) = [G(x)] \text{ diag} (I - M(x)),
\]

\[
M(x) := -\left[\frac{x_i}{G_i(x)} \right] \text{ diag} \frac{d}{dx} G'(x), \tag{4}
\]

and the entries in the \(n \times n \) matrix \(M(x) \) are

\[
M_{ij}(x) := -x_i \frac{\partial G_i(x)}{G_i(x)} \frac{\partial}{\partial x_j}(x),
\]

\[
= -x_i \frac{\partial \log G_i(x)}{\partial x_j}(x). \tag{5}
\]

Note that condition (C5) implies \(M_{ij}(x) > 0 \).

The spectral radius \(\rho(M) \) of an \(n \times n \) matrix \(M \) is the maximum of the norms of its eigenvalues. It is a standard result that if \(\rho(M) < 1 \) then \(I - M \) is invertible and \((I - M)^{-1} = \sum_{k=0}^{\infty} M^k \).

Theorem 2 Suppose \(G \) is \(C^1 \). Assume conditions (C0), (C1), (C2), (C5), let condition (C4) hold with \([0, q] \subset X \), and assume

\[
0 < x \leq q \implies \rho(M(x)) < 1. \tag{6}
\]

Then condition (C3) holds, whence the hypotheses and conclusions of Theorem 3 are valid.

The proof will be given elsewhere. Under the same hypotheses, the following conclusions also hold:

- \(T|\Gamma \) is a diffeomorphism.
- If \(x \in \Gamma \cap K^0 \), then the matrix \([T'(x)]^{-1} \) has strictly positive entries.

When condition (C5) holds, either of the following conditions implies Equation (6):

\[
0 < x \leq q \implies \sum_i M_{ij}(x) < 1, \quad (j = 1, \ldots, n), \tag{7}
\]

\[
0 < x \leq q \implies \sum_j M_{ij}(x) < 1, \quad (i = 1, \ldots, n). \tag{8}
\]

Each of these conditions implies that the largest positive eigenvalue of \(M(x) \) is the spectral radius by condition (C5) and the theorem of Perron and Frobenius [2], and that this eigenvalue is bounded above by the maximal row sum and the maximal column sum by Gershgorin’s theorem [3].
Competition models

In the following illustrative examples, we calculate bounds on parameters that make row sums of $M(x)$ obey Equation (7), validating the hypotheses and conclusions of Theorems 3 and 4.

Example 3 Consider a multidimensional version of Equation (2), based on an ecological model of May and Oster [19]:

$$T: K \rightarrow K, \quad T_i(x) = x_i \exp \left(B_i - \sum_j A_{ij} x_j \right), \quad B_i, A_{ij} > 0. \quad (9)$$

This map is not locally injective. In a small neighbourhood of the origin T is approximated by the discrete-time Lotka–Volterra map \hat{T} defined by $(\hat{T}x)_i = (\exp B_i) x_i (1 - \sum_j A_{ij} x_j)$, but as \hat{T} does not map K into itself, it is not useful as a global model. T has a global attractor Γ and a source at the origin, so a carrying simplex is plausible. But the special case $n = 1$, treated in Example 2, shows that further restrictions are needed.

Condition (C5) holds with $G_i(x) = \exp (B_i - \sum_j A_{ij} x_j)$. Evidently, these functions are strictly decreasing in x, which implies that T is strictly sublinear. Condition (C4) holds with $q_i = B_i / A_{ii}$, and it can be shown that $\Gamma \subset [0, q]$. In Equation (4), the matrix entries are

$$M_{ij}(x) = x_i A_{ij}. \quad (10)$$

Therefore, Theorem 2 shows that if

$$0 < x \leq q \implies \rho(M(x)) < 1, \quad (11)$$

then $\partial K \Gamma$ is the unique carrying simplex and $T|\Gamma$ is a diffeomorphism. From Equations (7), (8) and (10), we see that Equation (11) holds in case one of the following conditions is satisfied:

$$\frac{B_i}{A_{ii}} \sum_j A_{ij} < 1 \quad \text{for all } i, \quad (12)$$

or

$$\frac{B_i}{A_{ii}} \sum_i A_{ij} < 1 \quad \text{for all } j. \quad (13)$$

These conditions thus imply a unique carrying simplex, by Theorem 2.

To arrive at a biological interpretation of Equation (12), we rewrite it as

$$q_i \sum_j A_{ij} < 1, \quad (14)$$

where $q_i := B_i / A_{ii}$ is the axial equilibrium for species i, that is, its stable population in the absence of competitors. Equation (9) tells us that A_{ij} is the logarithmic rate by which the growth of population i inhibits the growth rate of population j. Thus, Equation (14) means that the average of these rates must be rather small compared to the single species equilibrium for population i. The plausibility of this x_1 is left to the reader, as is the biological meaning of Equation (13).

When $n = 1$, Equation (9) defines the map $T x = x e^{b-a x}$ of Example 2. The positive fixed point is $q = a / b$, and both Equations (12) and (13) boil down to $b < 1$, which was shown to imply a unique carrying simplex. That example also showed that there is no carrying simplex when $b > 2$.

As Equation (9) reduces to Example 2 on each coordinate axis, we see that Equation (9) lacks a carrying simplex provided

\[\frac{B_i}{A_{ii}} \sum_j A_{ij} > 2 \text{ for some } i, \]

or

\[\frac{B_i}{A_{ii}} \sum_i A_{ij} > 2 \text{ for some } j. \]

Example 4 Consider a competing population model due to Leslie and Gower [16]:

\[T : \mathbb{K} \rightarrow \mathbb{K}, \quad T_i x = \frac{C_i x_i}{1 + \sum_j A_{ij} x_j}, \quad C_i, A_{ij} > 0. \] (15)

Note that \(T \) need not be locally injective. When \(n = 1 \) all trajectories converge to 0 if \(C \leq 1 \), and all non-constant trajectories converge to \((C - 1)/A \) if \(C > 1 \). The case \(n = 2 \) is thoroughly analyzed by Cushing et al. [5].

Here,

\[G_i(x) := \frac{C_i}{1 + \sum_j A_{ij} x_j} > 0; \]

hence, condition (C5) holds. We assume that \(C_i > 1 \), guaranteeing condition (C4) with \(q_i = (C_i - 1)/A_{ii} \). In Equation (5), we have

\[M_{ij}(x) = \frac{x_i A_{ij}}{1 + \sum_l A_{il} x_l} < x_i A_{ij}. \]

So the row sums of \(M(x) \) are < 1 for all \(x \) provided \(q_i \sum_j A_{ij} < 1 \). Therefore, when

\[1 < C_i < 1 + \frac{A_{ii}}{\sum_j A_{ij}}, \]

Theorems 3 and 4 yield the following conclusions: there is a global attractor \(\Gamma \subset [0, q] \), the unique carrying simplex is \(\partial \mathbb{K} \cap \Gamma \) and \(T|\Gamma \) is a diffeomorphism.

Example 5 Consider a recurrent, fully connected neural network of \(n \) cells (or ‘cell assemblies’, [11]). At discrete times \(t = 0, 1, \ldots \), cell \(i \) has activation level \(x_i(t) \geq 0 \) and the state of the system is \(x(t) := (x_1(t), \ldots, x_n(t)) \). Cell \(i \) receives an input signal \(s_i(x(t)) \), which is a weighted sum of all the activations plus a bias term. Its activation is multiplied by a positive transfer function \(\tau_i \) evaluated on \(s_i \), resulting in the new activation \(x_i(t+1) = x_i(t) \tau_i(s_i) \).

We assume that each cell’s activation tends to decrease the activations of all cells, but each cell receives a bias that tends to increase its activation. We model this with negative weights \(-A_{ij} < 0 \), positive biases \(B_i > 0 \) and positive increasing transfer functions. For simplicity, we assume that all the transfer functions are \(e^\sigma \) where \(\sigma : [0, \infty) \rightarrow [0, \infty) \) is \(C^1 \). States evolve according to
the law
\[T: K \rightarrow K, \quad T_i(x) = x_i \exp \sigma (s_i(x)), \quad s_i(x) := B_i - \sum_j A_{ij} x_j. \]

We also assume that
\[\sigma(0) = 0, \quad \sigma'(s) > 0, \quad \sup \sigma'(s) = \gamma < \infty, \quad (s \in \mathbb{R}). \]
(16)

It is easy to verify that conditions (C1), (C2), (C4) and (C5) hold, with
\[q_i := \frac{B_i}{A_{ii}}, \quad G_i(x) := \exp \left(B_i - \sum_j A_{ij} x_j \right), \quad M_{ij} = \sigma'(s_i(x)) A_{ij}, \]
(17)

where \(M_{ij}(x) \) is defined as in Equation (5).

It turns out that for given weights and biases, the system has a unique carrying simplex provided the gain parameter \(\gamma \) in Equation (16) is not too large. It suffices to assume that
\[\gamma < \left[\max_i \left(\frac{B_i}{A_{ii}} \sum_j A_{ij} \right) \right]^{-1}. \]
(18)

For then Equations (16), (17) and (18) imply Equation (8) and hence condition (C3), so Theorems 1 and 2 imply a unique carrying simplex for \(T \).

There is a vast literature on neural networks, going back to the seminal book of Hebb [10]. Network models of competition were analyzed in the pioneering works of Grossberg [6] and Cohen and Grossberg [4]. Generic convergence in certain types of competitive and cooperative networks is proved in [13]. Levine’s book [17] has mathematical treatments of several aspects of neural network dynamics.

Competitive differential equations

Consider a periodic differential equation in \(K \):
\[\dot{u}_i = u_i G_i(t, u_1, \ldots, u_n) \equiv u_i G_i(t + 1, u_1, \ldots, u_n), \quad t, u_i \geq 0, \quad (i = 1, \ldots, n), \]
(19)

where the maps \(G_i: K \rightarrow \mathbb{R} \) are \(C^1 \). The solution with initial value \(u(0) = x \) is denoted by \(t \mapsto T_{i,t}x \). Solutions are assumed to be defined for all \(t \geq 0 \). Each map \(T_i \) maps \(K \) diffeomorphically onto a relatively open set in \(K \) that contains the origin. The Poincaré map is \(T := T_1 \).

We postulate the following conditions for Equation (19):

(A1) total competition: \(G_i/x_j \leq 0, \quad (i, j = 1, \ldots, n) \),

(A2) strong self-competition: \(\sum_{k \in I_i(x)} G_k/x_k(t, x) < 0 \),

(A3) decrease of large population: \(G_i(t, x) < 0 \) for \(x_i \) sufficiently large.

This implies existence of a global attractor for the Poincaré map \(T \).

(A4) increase of small populations: \(G_i(t, 0) > 0 \).

Under these assumptions, there are two obvious candidates for a carrying simplex for \(T \), namely \(\partial K B \) and \(\partial K \Gamma \), the respective boundaries in \(K \) of \(B(0) \) and \(\Gamma \). Existence of a unique carrying simplex implies \(\partial K B = \partial K \Gamma \).
THEOREM 3 Assume System (19) has properties (A1)–(A4). Then, there is a unique carrying simplex, and it is the global attractor for the dynamics in $\mathbb{K} \setminus \{0\}$.

The proof, which will be given elsewhere, uses a subtle dynamical consequence of competition discovered by Wang and Jiang [34]: if $u(t), v(t)$ are solutions to Equation (19) such that for all i

$$u_i(t) < v_i(t), \quad (s < t < s_1),$$

then

$$\frac{d}{dt}(u_i/v_i) > 0, \quad (s < t < s_1).$$

Example 6 A competitive, periodic Volterra–Lotka system in \mathbb{K} of the form

$$\dot{u}_i = u_i \left(B_i(t) - \sum_j A_{ij}(t)u_j \right), \quad B_i, A_{ij} > 0$$

satisfies (A1)–(A4) and thus the conclusion of Theorem 8.

Example 7 Several mathematicians have investigated carrying simplex dynamics for competitive, autonomous Volterra–Lotka systems in \mathbb{K} having the form

$$\dot{u}_i = u_i \left(B_i - \sum_j A_{ij}u_i \right) := u_iH_i(u_1, \ldots, u_n), \quad B_i, A_{ij} > 0. \quad (20)$$

The best results are for $n = 3$: the interesting dynamics is on a two-dimensional cell, therefore, the Poincaré–Bendixson theorem [9] precludes any kind of chaos and makes the dynamics easy to analyze. The dynamics for generic systems were classified by Zeeman [33], with computer graphics exhibited in Zeeman [34]. She proved that in many cases simple algebraic criteria on the coefficients determine the existence of limit cycles and Hopf bifurcations.

Van den Driessche and Zeeman [27] applied Zeeman’s classification to model two competing species with species 1, but not species 2, susceptible to disease. They showed that if species 1 can drive species 2 to extinction in the absence of disease, then the introduction of disease can weaken species 1 sufficiently to permit stable or oscillatory coexistence of both species.

Zeeman and Zeeman [36] showed that generically, but not in all cases, the carrying simplex is uniquely determined by the dynamics in the two-dimensional facets of \mathbb{K}. Systems with two and three limit cycles have been found by Hofbauer and So [15], Lu and Luo [18]), and Gyllenberg et al. [8]. No examples of Equation (20) with four limit cycles are known.

More information on the dynamics of Equation (20) can be found in [26, 30, 31, 35, 37].

Background

In an important paper on competitive maps, Smith [25] investigated C^2 diffeomorphisms T of \mathbb{K}. Under assumptions similar to (C0)–(C5), he proved T is strictly retrotone and established the existence of the global attractor Γ and the repulsion basin $B(0)$. He showed that $\partial_{\mathbb{K}} B(0)$ and $\partial_{\mathbb{K}} \Gamma$ are compact unordered invariant sets homeomorphic to the unit simplex, and each of them contains all periodic orbits except the origin. His conjecture that $\partial_{\mathbb{K}} B = \partial_{\mathbb{K}} \Gamma$ remains unproved from his hypotheses. He also showed that for certain types of competitive planar maps every
bounded trajectory converges, extending earlier results of Hale and Somolinos [3] and de Mottoni and Schiaffino [24].

Using Smith’s results and those of Hess and Poláčik [11], Wang and Jiang [28] obtained unique carrying simplices for competitive C^2 maps.

For further results on the smoothness, geometry and dynamics of carrying simplices, see [1,20–23].

Mea culpa Uniqueness of the carrying simplex for Equation (20) was claimed in [12], but Zeeman [32] discovered an error in the proof of Proposition 2.3(d).

References

[34] ———, http://www.bowdoin.edu/faculty/m/mlzeeman/index.shtml.

