Title
HYPERFINE STRUCTURE AID NUCLEAR MOMENTS OF Br80 AND Br80m

Permalink
https://escholarship.org/uc/item/5p52j525

Authors
White, Matthew B.
Lipworth, Edgar
Alpert, Seymour.

Publication Date
1963-10-14
HYPERFINE STRUCTURE AND NUCLEAR MOMENTS
OF Br80 AND Br80m

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Submitted for publication in Physical Review

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

HYPERFINE STRUCTURE AND NUCLEAR MOMENTS
OF Br80 AND Br80m

Matthew B. White, Edgar Lipworth, and Seymour Alpert

October 14, 1963
Hyperfine Structure and Nuclear Moments of Br80 and Br80m (*)

Matthew B. White, † Edgar Lipworth, ‡ and Seymour Alpert§

Lawrence Radiation Laboratory
University of California
Berkeley, California

October 14, 1963

ABSTRACT

The hyperfine-structure-interaction constants have been measured in the ground states of 18-min Br80 and 4.5-h Br80m. The method used was that of atomic-beam radio-frequency spectroscopy with radioactive detection. The results are: $|a(\text{Br}^{80})| = 323.9(4)$ Mc/sec, $|b(\text{Br}^{80})| = 227.62(10)$ Mc/sec with $b/a < 0$; and $a(\text{Br}^{80m}) = 166.05(2)$ Mc/sec and $b(\text{Br}^{80m}) = -874.9(2)$ Mc/sec. The magnetic-dipole and electric-quadrupole moments of these isotopes were calculated from the measured interaction constants and known nuclear data for the stable Br isotopes; these moments are: $|\mu_I(\text{Br}^{80})| = 0.5138(6)$ nm, $|Q(\text{Br}^{80})| = 0.199(8)$ barn, $Q/\mu_I > 0$; $\mu_I(\text{Br}^{80m}) = 1.3170(6)$ nm $Q(\text{Br}^{80m}) = 0.76(3)$ barn. The μ_I's are corrected for diamagnetic shielding and the Q's are corrected for core polarization effects.
INTRODUCTION

The nuclei Br\(^{76}\) and Se\(^{75}\) possess large quadrupole moments, which might lead one to suspect the existence of incipient collective effects in this region of the periodic table.\(^1\) The work described in this paper was initiated to further explore this possibility. Additionally, the isomeric relationship existing between Br\(^{80m}\) and Br\(^{80}\) is an attractive feature which invites comparison of the nuclear moments of these two isotopes.

EXPERIMENTAL METHOD

The experimental method used was standard atomic-beam magnetic-resonance spectroscopy with radioactive detection. The "flop-in" atomic-beam apparatus, and its allied equipment, was essentially the same as that used for previous work and has been described in detail by Garvin et al.\(^2\) The main modification was the incorporation of a new "C" magnet with very accurately aligned pole tips. The uniformity of the C field was thus considerably improved; in the case of the K\(^{39}\) resonances used for magnetic-field calibration purposes, line widths at half maximum intensity remained around 40 kc for all fields from 0 to 500 G. This represents an improvement in accuracy over the original apparatus of about a factor of 50 at 500 G.

The Br\(^{80}\) and Br\(^{80m}\) were produced by bombarding 3- to 4-g lots of KBr crystals with thermal neutrons. Bombardment times ranged from 15 min to 4 h depending on the neutron flux used. Although the 18-min Br\(^{80}\), which was produced directly by neutron bombardment, quickly decayed away, the decay of Br\(^{80m}\) to Br\(^{80}\) provided a continuous supply of this isotope, once secular equilibrium was attained. In this way, atomic beams containing an appreciable percentage of Br\(^{80}\) could be produced for periods of time ranging from 5 to 8 h.
Elemental bromine was obtained from the target material and dissociated into an atomic beam using the same chemical procedures and discharge tube described by Lipworth et al.1 The atoms were collected on freshly flamed platinum foils, which, though exhibiting only 80\% of the collection efficiency of silver surfaces used earlier, were more uniform and consistent in their behavior.

THEORY

The general theory needed for the determination of spins, hyperfine structures, and nuclear moments of free atoms by the method of atomic-beam radio-frequency spectroscopy is given detailed discussion in two review articles,3,4 and application of the method to the particular case of bromine isotopes is fully treated by Garvin et al.5 Therefore, only the results of the theory that are necessary for an understanding of the measurements reported below are given here. The meanings of the various symbols are quite standard and are the same as those adopted by Garvin et al.

The Hamiltonian (in units of Me/sec) is

\[
\mathcal{H} = a \mathbf{I} \cdot \mathbf{J} + b \frac{3(I \cdot J)^2 + 3/2 I \cdot J - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)} - g_J \frac{\mu_0 H}{h} J_z - g'_I \frac{\mu_0 H}{h} I_z',
\]

where

\[
(I \cdot J) = \frac{1}{2} [F(F+1) - J(J+1) - I(I+1)],
\]

\(a\) is the magnetic-dipole-interaction constant, and \(b\) is the electric-quadrupole-interaction constant.
If it is assumed that the $^2P_{3/2}$ ground state of Br arises from a pure $4s^24p^5$ configuration and that this ground state represents a case of pure L-S coupling, then the hyperfine-interaction constants are given (in units of Mc/sec) by the expressions:

\[
a = \frac{\mu_0^2}{\hbar} \frac{\mu_I}{I} \frac{m}{M} \frac{2L(L+1)}{J(J+1)} \mathcal{F}(J, Z_1) \left\langle \frac{1}{r^3} \right\rangle
\]

and

\[
b = -\frac{e^2 Q}{\hbar} \frac{2J-1}{2J+2} \mathfrak{R}(L, J, Z_1) \left\langle \frac{1}{r^3} \right\rangle.
\]

For two isotopes x and y we have, from Eq. (2),

\[
\mu_I(x) = \mu_I(y) \frac{a(x)}{a(y)} \frac{I(x)}{I(y)}.
\]

This equation can be used to calculate the unknown nuclear moment μ_I of an isotope from its "a" value, provided the μ_I and "a" value of another isotope of the element is available. This equation is valid under the assumption that the hyperfine anomaly can be ignored and would thus be expected to hold quite accurately for the $^2P_{3/2}$ state of Br. Alternatively, an explicit expression for μ_I can be obtained by eliminating the unknown $\left\langle \frac{1}{r^3} \right\rangle$ term from Eq. (2) if we use an expression given by Casimer for the fine-structure separation (in units of cm$^{-1}$). We then have

\[
\delta = \frac{\mu_0^2}{\hbar c} Z_1(2L+1) \mathcal{K}(L, Z_1) \left\langle \frac{1}{r^3} \right\rangle,
\]

where Z_1 is the "effective charge" that the valence "hole" experiences while inside the electron core; Z_1 can be estimated from optical spectroscopic data with an accuracy of about 5%. By solving Eq. (5) for $\left\langle \frac{1}{r^3} \right\rangle$ and by substituting the result into Eq. (2) yields (in units of the nuclear magneton)
\[\mu = I \frac{M}{m} \frac{a \times 10^6}{c} \sum_i \frac{J(J+1)(2L+1)}{2L(L+1)} \frac{a_i}{F} \]

(6)

To obtain an expression for \(Q \) involving only directly measurable quantities, either Eq. (2) or Eq. (5) can be used to eliminate the \(\langle 1/r^3 \rangle \) term from Eq. (3). The use of Eq. (2) gives

\[Q = -4 \frac{m}{M} \frac{\mu_I}{2} \left(\frac{\mu_0}{\varepsilon} \right)^2 \frac{\mathcal{F}/R}{J(2J-1)} \frac{L(L+1)}{b/a}. \]

(7)

DATA AND RESULTS

The hyperfine-interaction constants \(a \) and \(b \) were determined for \(\text{Br}^{80} \) and \(\text{Br}^{80m} \) by measuring the frequencies of 15 rf resonances for each isotope at magnetic fields ranging from 5.57 to 504.33 G. The "observable" flop-in transitions studied are shown in the schematic energy-level diagrams of Figs. 1 and 2 for \(\text{Br}^{80} \) and \(\text{Br}^{80m} \), respectively. These diagrams, which show the correspondence between high- and low-field transitions, are drawn under the assumption that \(\mu_1 \) is positive and that the hyperfine levels exhibit normal ordering for both \(\text{Br}^{80} \) and \(\text{Br}^{80m} \). In constructing the diagrams, we made use of the known nuclear spins \(I(\text{Br}^{80}) = 1 \) and \(I(\text{Br}^{80m}) = 5 \). Observable transitions (i.e., those for which \(m_J \) changes to \(-m_J \) in the high-field limit) within the \(F = I + J \) hyperfine level are designated by \(\alpha \), while those within the \(F = I + J - 1 \) level are labeled \(\beta \). The resonance data were analyzed by using an improved version of the computer program described by Garvin et al., which was modified for use on the IBM 7090 digital computer.

Figures 3 and 4 show some typical intermediate-field resonance curves traced out for \(\text{Br}^{80} \) and \(\text{Br}^{80m} \), respectively. For both isotopes Tables I and II give: (a) a list of all frequencies at which resonances were observed, together with the uncertainties in these frequencies and the corresponding fields and
field uncertainties; (b) the best values of a and b obtained by the least-squares fit; (c) the frequency residuals using these values of a and b; and (d) χ^2 (a quantity that measures the "goodness of fit."

Only a and b were allowed to vary during the data-fitting process because of the high accuracy with which g_j and g^{\prime}_I are known\(^6\) for Br\(^{79}\) and Br\(^{81}\).

In Table I the values of a, b, χ^2, and the frequency residuals are given where we assume both $g^{\prime}_I > 0$ and $g^{\prime}_I < 0$. Although the normal ordering of levels assumed in Fig. 1 is apparently verified, no conclusion can be drawn from the data collected concerning the sign of g^{\prime}_I. Therefore, by taking the average of the results for these two cases and by doubling the errors quoted in Table I to give a 95% chance that the actual values lie inside our error limits, we have as the final results for Br\(^{80}\),

$$|a(Br^{80})| = 323.9 \pm 0.4 \text{ Mc/sec},$$

and

$$|b(Br^{80})| = 227.62 \pm 0.10 \text{ Mc/sec},$$

where $b/a < 0$. By using these results and the solution of Eq. (1) at $H=0$, one obtains for Br\(^{80}\) the zero-field hyperfine-structure separations:

$$|\Delta \nu(5/2, 3/2)| = \frac{5}{2}a + \frac{5}{4}b = 525.2 \pm 1.2 \text{ Mc/sec}$$

and

$$|\Delta \nu(3/2, 1/2)| = \frac{3}{2}a - \frac{9}{4}b = 998.0 \pm 1.0 \text{ Mc/sec}.$$

In Table II, a, b, χ^2, and the frequency residuals are given for $g^{\prime}_I > 0$ only. That the sign of g^{\prime}_I is positive and that the level ordering is normal for Br\(^{80m}\) was established both by trying to fit the data using a negative g^{\prime}_I, and by starting g^{\prime}_I with a negative value and then allowing it to vary freely while fitting the experimental data. In the first case, a value of $\chi^2 = 50.9$ was obtained as compared with $\chi^2 = 4.7$ given in Table II. In the second case, a positive value of g^{\prime}_I consistent with that obtained using Eq. (4) was obtained. Doubling the
errors given in the table, we get for Br\(^{80}\)m

\[a(\text{Br}\^{80}\text{m}) = 166.05 \pm 0.02 \text{ Mc/sec}, \]

\[b(\text{Br}\^{80}\text{m}) = -87.88 \pm 0.2 \text{ Mc/sec}, \]

and

\[\Delta \nu(13/2, 11/2) = \frac{13}{2}a + \frac{13}{2}b = 510.62 \pm 0.25 \text{ Mc/sec} \]

and

\[\Delta \nu(11/2, 9/2) = \frac{11}{2}a - \frac{5}{12}b = 1277.80 \pm 0.18 \text{ Mc/sec}. \]

The nuclear magnetic dipole moments are calculated from Eq. (4) by using the \(a \) values given above, the \(a \) values of the stable Br isotopes measured by King and Jaccarino,\(^6\) and the corresponding \(\mu_B \)'s tabulated by Walchli.\(^9\) When this is done, we obtain

\[|\mu_B(\text{Br}\^{80})| = 0.5122(6) \text{ nm (uncorrected for diamagnetic shielding)} \]

and

\[\mu_B(\text{Br}\^{80}\text{m}) = 1.3131(6) \text{ nm (uncorrected for diamagnetic shielding)}. \]

If we multiply by the appropriate diamagnetic shielding factor tabulated by Kopfermann,\(^10\) we obtain the diamagnetically corrected moments

\[|\mu_B(\text{Br}\^{80})| = 0.5138(6) \text{ nm (corrected)} \]

and

\[\mu_B(\text{Br}\^{80}\text{m}) = 1.3170(6) \text{ nm (corrected)}. \]

Barns and Smith\(^11\) have recommended a value \(Z_i = 31 \) for the effective charge seen by the valence hole in Br. When this value and the values of the \(a \)'s obtained above are substituted into Eq. (6), one finds

\[|\mu_B(\text{Br}\^{80})|_{\text{calculated}} = 0.47 \text{ nm (uncorrected)}, \]

and

\[\mu_B(\text{Br}\^{80}\text{m})_{\text{calculated}} = 1.20 \text{ nm (uncorrected)}. \]

These are in reasonable agreement with the preceding uncorrected values.

The nuclear quadrupole moments are obtained from Eq. (7). Use of the results given above, and the appropriate relativistic correction factors tabulated
by Kopfermann, yield

\[|Q(\text{Br}^{80})| = 0.191 \text{ barn (uncorrected)} \]

and

\[Q(\text{Br}^{80\text{m}}) = 0.73 \text{ barn (uncorrected)}. \]

Multiplication of the above by the factor \(C = 1.040 \), as suggested by Sternheimer, to account for electron-core polarization effects, gives for the corrected quadrupole moments

\[|Q(\text{Br}^{80})| = 0.199(8) \text{ barn (corrected)} \]

and

\[Q(\text{Br}^{80\text{m}}) = 0.76(3) \text{ barn (corrected)}. \]

Because of the inaccuracies inherent in corrections of this kind, uncertainties equal to the Sternheimer corrections themselves have been assigned to the final values. Furthermore, even though the algebraic sign of \(Q(\text{Br}^{80}) \) is not determined by the experimental data, Eqs. (2) and (3), plus the relative signs of \(a(\text{Br}^{80}) \) and \(b(\text{Br}^{80}) \) given in Table I, indicate \(Q(\text{Br}^{80})/\mu_{1}(\text{Br}^{80}) > 0. \)

DISCUSSION

Both the independent-particle shell model given by Mayer et al. and the collective model by Bohr et al., are able to account for the known spins and parities of the \(\text{Br}^{80} \) and \(\text{Br}^{80\text{m}} \) nuclei, as indicated below. Calculations based on neither nuclear model, however, give good quantitative agreement with the measured nuclear moments. Therefore, just as in the case of \(\text{Br}^{76} \) discussed by Lipworth et al., \(\text{Br}^{80} \) and \(\text{Br}^{80\text{m}} \) probably represent transition cases where neither very weak nor very strong coupling of the individual nucleons to the nuclear core exists.

Application of the Shell Model

In view of the fact that \(\text{Br}^{77} \), \(\text{Br}^{79} \), and \(\text{Br}^{81} \), all have spins 3/2, while the last two have positive quadrupole moments, it seems safe to assume that
the proton configuration for Br isotopes is \(\left(\frac{p}{3/2} \right) ^3 \left(\frac{f_5/2}{4} \right) ^4 \) \(\frac{3}{2} \), as suggested by Mayer and Jensen.\(^{13}\)

The neutron configurations for \(^{80}\text{Br} \) and \(^{80}\text{Br}_m \) can be chosen in such a way that (a) the spins are correctly predicted by use of one of the Brennan and Bernstein\(^{15}\) coupling rules, (b) the neutron configurations are the same as ones previously assigned to even-odd nuclei with valence neutrons lying in the same shell-model sublevel as those of the Br isotopes, (c) the positive parity of \(^{80}\text{Br} \) and the negative parity of \(^{80}\text{Br}_m \) are properly accounted for,\(^{16}\) and (d) the relative signs of \(\mu_I \) and \(Q \) for \(^{80}\text{Br} \) and the absolute signs of \(\mu_I \) and \(Q \) for \(^{80}\text{Br}_m \) are predicted correctly. These criteria lead to the unique shell-model configuration assignments in Table III.

As we said, neither of these configurations leads to accurate predictions of the nuclear moments. Calculations using "effective nucleon-gyromagnetic ratios" give the results shown in Table III. These possess the correct algebraic signs but are quantitatively far from the experimentally measured values.

Some known data pertaining to the odd-odd isotopes of Br as well as data\(^{16}\) pertaining to related even-odd isotopes of Se are given in Table IV. The results for \(^{76}\text{Br} \) and \(^{82}\text{Br} \) were obtained by Green et al.\(^{1,5}\) and the neutron configurations for these isotopes were also assigned by these authors. For \(^{76}\text{Br} \), \(^{82}\text{Br} \), and \(^{80}\text{Br} \), the relative signs of \(\mu_I \) and \(Q \) have been well established but the actual signs given in Table IV, although the most likely on the basis of the data, are not definitely known. From this table the correspondences between a given Se isotope and the Br isotope that has the same neutron configuration is quite clear. Two points are particularly noteworthy of mention:

(a) There is apparently a one-to-one correspondence in the order of neutron-level filling in Se and in Br. This indicates, as predicted by the shell model,\(^{13}\) that the presence of the odd-proton configuration has little effect on the neutron configuration.
(b) The difference in the signs of the magnetic moments (or at least the
relative signs of \(\mu_l \) and \(Q \)) of \(\text{Br}^{76} \) and \(\text{Br}^{80} \), which at first sight seems sur-
prising because of other similarities between these isotopes [e.g., \(I(\text{Br}^{76}) = I(\text{Br}^{80}) \); \(|\mu(\text{Br}^{76})| \approx |\mu(\text{Br}^{80})| \); \(|Q(\text{Br}^{76})| \approx |Q(\text{Br}^{80})| \)], is reflected by a similar
difference between \(\text{Se}^{75} \) and \(\text{Se}^{77} \) and is apparently due to radically different
neutron configurations.

Also, the systematic trends in Table IV seem to support the configuration
assignments and signs of nuclear moments given above for \(\text{Br}^{80} \) and \(\text{Br}^{80m} \) as
well as those given for the other \(\text{Br} \) isotopes by other authors. In particular,
the positive signs of \(\mu_l \) and \(Q \) for \(\text{Br}^{82} \) seem very likely in view of the similarity
exhibited between this isotope and \(\text{Br}^{80m} \).

Application of the Collective Model

Even though the mass number of \(\text{Br}^{80} \) and \(\text{Br}^{80m} \) lies far outside the range
where collective aspects of nuclear motion would be expected to be important,\(^{14}\)
the possibility that collective effects might be significant is indicated by the low
shell-model quadrupole-moment estimates in Table III, and by the apparent
collective nature of the \(\text{Br}^{76} \) nucleus.\(^{1}\)

To decide upon collective-model configuration assignments for \(\text{Br}^{80} \) and
\(\text{Br}^{80m} \), one must derive appropriate values of the nuclear-deformation parameter
\(\delta \) from the measured quadrupole moments. In this way, one obtains \(\delta(\text{Br}^{80}) = 0.24 \)
and \(\delta(\text{Br}^{80m}) = 0.12 \). That these values are so different probably reflects the
inadequacy of a strong-coupling approximation.

Unique collective-model configurations emerge for both \(\text{Br}^{80} \) and \(\text{Br}^{80m} \),
if we take any value in the range \(0.1 < \delta < 0.3 \) as a possible value of \(\delta \) and impose,
on acceptable configurations, the conditions that the values (a) are plausible on
the basis of the Nilsson-level filling diagrams,\(^{14}\) (b) give the correct spin values
when the Gallagher and Moszkowski coupling rules are used,\(^{17}\) (c) give the
correct nuclear parities, and (d) account correctly for the relative signs of
μ_1 and Q for Br^{80} and the absolute signs of μ_1 and Q for Br^{80m}. These
configurations are given in Table III and are the same as those previously
assigned by Gallagher and Moszkowski without knowledge of the nuclear moments.
Calculations based on these configurations for any value of δ in the range
mentioned above lead to μ_1 values comparable in accuracy to those resulting
from shell-model calculations.
ACKNOWLEDGMENTS

The authors express their appreciation to Mr. R. E. McCracken and Mr. K. R. Voice of the Lawrence Radiation Laboratory Health Chemistry Division for considerable support during the course of these experiments, and to Mr. H. S. Powell and Mr. W. A. Berlund of the Glass Shop for their patient help and advice.
FOOTNOTES AND REFERENCES

* Work done under the auspices of the U. S. Atomic Energy Commission.

† Present address: Aeronutronic Division, Ford Motor Company, Newport Beach, California.

‡ Present address: Department of Physics, Brandeis University, Waltham, Massachusetts.

§ Present address: Bell Telephone Laboratories, Murray Hill, New Jersey.

Table I. 80Br resonance data and final results.

<table>
<thead>
<tr>
<th>Type of Resonance</th>
<th>v_K (Mc/sec)</th>
<th>H (G)</th>
<th>ΔH (G)</th>
<th>v_{Br} (Mc/sec)</th>
<th>Δv_{Br} (Mc/sec)</th>
<th>$g_I^1 > 0$</th>
<th>$g_I^1 < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4.0</td>
<td>5.567</td>
<td>0.005</td>
<td>6.275</td>
<td>0.060</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>a</td>
<td>16.0</td>
<td>20.75</td>
<td>0.01</td>
<td>23.650</td>
<td>0.067</td>
<td>0.057</td>
<td>0.051</td>
</tr>
<tr>
<td>a</td>
<td>25.0</td>
<td>30.92</td>
<td>0.01</td>
<td>35.400</td>
<td>0.067</td>
<td>-0.010</td>
<td>-0.018</td>
</tr>
<tr>
<td>a</td>
<td>50.0</td>
<td>55.19</td>
<td>0.01</td>
<td>64.338</td>
<td>0.015</td>
<td>0.013</td>
<td>0.004</td>
</tr>
<tr>
<td>a</td>
<td>100.0</td>
<td>93.04</td>
<td>0.01</td>
<td>111.450</td>
<td>0.015</td>
<td>0.004</td>
<td>-0.011</td>
</tr>
<tr>
<td>β</td>
<td>4.0</td>
<td>5.567</td>
<td>0.005</td>
<td>7.620</td>
<td>0.067</td>
<td>-0.001</td>
<td>-0.002</td>
</tr>
<tr>
<td>β</td>
<td>16.0</td>
<td>20.75</td>
<td>0.01</td>
<td>28.400</td>
<td>0.083</td>
<td>-0.032</td>
<td>-0.037</td>
</tr>
<tr>
<td>β</td>
<td>25.0</td>
<td>30.92</td>
<td>0.01</td>
<td>42.400</td>
<td>0.033</td>
<td>0.003</td>
<td>-0.004</td>
</tr>
<tr>
<td>β</td>
<td>50.0</td>
<td>55.19</td>
<td>0.01</td>
<td>75.938</td>
<td>0.015</td>
<td>0.007</td>
<td>-0.005</td>
</tr>
<tr>
<td>β</td>
<td>100.0</td>
<td>93.04</td>
<td>0.01</td>
<td>129.145</td>
<td>0.015</td>
<td>0.005</td>
<td>-0.013</td>
</tr>
<tr>
<td>a</td>
<td>200.0</td>
<td>149.71</td>
<td>0.01</td>
<td>186.555</td>
<td>0.015</td>
<td>0.008</td>
<td>-0.002</td>
</tr>
<tr>
<td>a</td>
<td>400.0</td>
<td>238.621</td>
<td>0.008</td>
<td>314.238</td>
<td>0.020</td>
<td>-0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>β</td>
<td>200.0</td>
<td>149.71</td>
<td>0.01</td>
<td>212.010</td>
<td>0.020</td>
<td>0.010</td>
<td>-0.014</td>
</tr>
<tr>
<td>β</td>
<td>400.0</td>
<td>238.621</td>
<td>0.008</td>
<td>352.270</td>
<td>0.020</td>
<td>0.015</td>
<td>-0.009</td>
</tr>
<tr>
<td>β</td>
<td>1100.0</td>
<td>504.329</td>
<td>0.007</td>
<td>834.740</td>
<td>0.015</td>
<td>-0.004</td>
<td>0.003</td>
</tr>
</tbody>
</table>

$g_I^1 > 0$:

- $a = 323.77(8)$ Mc/sec
- $b = -227.63(3)$ Mc/sec
- $\chi^2 = 2.2$

$g_I^1 < 0$:

- $a = -324.01(8)$ Mc/sec
- $b = 227.60(3)$ Mc/sec
- $\chi^2 = 2.1$

Average of $g_I^1 > 0$ and $g_I^1 < 0$:

- $|a| = 323.9(2)$ Mc/sec
- $b/a < 0$
- $|b| = 227.62(5)$ Mc/sec
Table II. \(\text{Br}^{80m} \) resonance data and final results

\[
g_I > 0
\]
\[
a = 166.047(9) \text{ Mc/sec} \quad \chi^2 = 4.7
\]
\[
b = -874.9(1) \text{ Mc/sec}
\]

<table>
<thead>
<tr>
<th>Type of resonance</th>
<th>(\nu_K) (Me/sec)</th>
<th>(H) (G)</th>
<th>(\Delta H) (G)</th>
<th>(\nu_{Br}) (Me/sec)</th>
<th>(\Delta \nu_{Br}) (Me/sec)</th>
<th>Residual (Me/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>4.0</td>
<td>5.57</td>
<td>0.03</td>
<td>2.400</td>
<td>0.025</td>
<td>-0.029</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>8.0</td>
<td>10.87</td>
<td>0.03</td>
<td>4.800</td>
<td>0.020</td>
<td>0.000</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>16.0</td>
<td>20.75</td>
<td>0.05</td>
<td>9.400</td>
<td>0.025</td>
<td>0.016</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>32.0</td>
<td>38.24</td>
<td>0.03</td>
<td>18.000</td>
<td>0.020</td>
<td>-0.007</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>70.0</td>
<td>71.63</td>
<td>0.01</td>
<td>36.375</td>
<td>0.015</td>
<td>0.006</td>
</tr>
<tr>
<td>(\beta)</td>
<td>8.0</td>
<td>10.87</td>
<td>0.03</td>
<td>2.700</td>
<td>0.020</td>
<td>0.003</td>
</tr>
<tr>
<td>(\beta)</td>
<td>16.0</td>
<td>20.75</td>
<td>0.05</td>
<td>5.200</td>
<td>0.025</td>
<td>0.039</td>
</tr>
<tr>
<td>(\beta)</td>
<td>32.0</td>
<td>38.24</td>
<td>0.02</td>
<td>9.550</td>
<td>0.015</td>
<td>-0.001</td>
</tr>
<tr>
<td>(\beta)</td>
<td>70.0</td>
<td>71.63</td>
<td>0.01</td>
<td>18.150</td>
<td>0.015</td>
<td>-0.006</td>
</tr>
<tr>
<td>(\beta)</td>
<td>100.0</td>
<td>93.044</td>
<td>0.009</td>
<td>23.950</td>
<td>0.012</td>
<td>-0.005</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>200.0</td>
<td>149.714</td>
<td>0.008</td>
<td>88.838</td>
<td>0.023</td>
<td>0.013</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>400.0</td>
<td>238.62</td>
<td>0.01</td>
<td>161.710</td>
<td>0.010</td>
<td>-0.002</td>
</tr>
<tr>
<td>(\beta)</td>
<td>200.0</td>
<td>149.71</td>
<td>0.01</td>
<td>41.235</td>
<td>0.015</td>
<td>-0.001</td>
</tr>
<tr>
<td>(\beta)</td>
<td>399.988</td>
<td>238.62</td>
<td>0.02</td>
<td>77.277</td>
<td>0.010</td>
<td>0.009</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1100.0</td>
<td>504.329</td>
<td>0.007</td>
<td>284.610</td>
<td>0.015</td>
<td>-0.002</td>
</tr>
</tbody>
</table>
Table III. Theoretical configuration and moments for \(\text{Br}^{80} \) and \(\text{Br}^{80\text{m}} \).

<table>
<thead>
<tr>
<th>Model</th>
<th>Nuclide</th>
<th>Configuration Proton</th>
<th>Configuration Neutron</th>
<th>(\mu_1) (nm)</th>
<th>Q(barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell</td>
<td>(\text{Br}^{80})</td>
<td>(\left[(\cdot p_{3/2})^3(f_{5/2})^4 \right]_{3/2})</td>
<td>(\left[(\cdot p_{1/2})^4(g_{9/2})^6 \right]_{1/2})</td>
<td>1.84</td>
<td>0.51</td>
</tr>
<tr>
<td>Shell</td>
<td>(\text{Br}^{80\text{m}})</td>
<td>(\left[(3/2)^3(f_{5/2})^4 \right]_{3/2})</td>
<td>(\left[(1/2)^0(g_{9/2})^7 \right]_{7/2})</td>
<td>1.20</td>
<td>1.32</td>
</tr>
</tbody>
</table>

Table IV. Some known data pertaining to odd-odd isotopes of Br and to even-odd isotopes of Se.

<table>
<thead>
<tr>
<th>Neutron configuration</th>
<th>Even-odd nuclide</th>
<th>I</th>
<th>(\mu_1) (nm)</th>
<th>Q (barns)</th>
<th>Odd-odd nuclide</th>
<th>I</th>
<th>(\mu_1) (nm)</th>
<th>Q (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left[(f_{5/2})^5 \right]_{5/2})</td>
<td>(\text{Se}^{75})</td>
<td>5/2</td>
<td>(0)</td>
<td>+1.1</td>
<td>(\text{Br}^{76})</td>
<td>1</td>
<td>(-0.55)</td>
<td>(+0.27)</td>
</tr>
<tr>
<td>(\left[(p_{1/2})^4(g_{9/2})^4 \right]_{1/2})</td>
<td>(\text{Se}^{77})</td>
<td>1/2</td>
<td>+0.53</td>
<td><0.002</td>
<td>(\text{Br}^{80})</td>
<td>1</td>
<td>(+0.51)</td>
<td>(+0.20)</td>
</tr>
<tr>
<td>(\left[(g_{9/2})^7 \right]_{7/2})</td>
<td>(\text{Se}^{79})</td>
<td>7/2</td>
<td>-1.02</td>
<td>+0.9</td>
<td>(\text{Br}^{80\text{m}})</td>
<td>5</td>
<td>+1.32</td>
<td>+0.76</td>
</tr>
<tr>
<td>(\left[(g_{9/2})^7 \right]_{7/2})</td>
<td>(\text{Se}^{79})</td>
<td>7/2</td>
<td>-1.02</td>
<td>+0.9</td>
<td>(\text{Br}^{82})</td>
<td>5</td>
<td>(+1.63)</td>
<td>(+0.76)</td>
</tr>
</tbody>
</table>
Figure Legends

Fig. 1. Schematic energy-level diagram for Br80; $I = 4$, $J = 3/2$.

Fig. 2. Schematic energy-level diagram for Br80m; $I = 5$, $J = 3/2$.

Fig. 3. Intermediate-field resonance curves for Br80.

Fig. 4. Intermediate-field resonance curves for Br80m.
Br^{80} resonance curves

(5/2, -1/2) → (5/2, 3/2)

transition

\(H = 149.71 \text{ G} \)

\[\nu \text{ (Br}^{80}) \text{ (Mc/sec)} \]

Count/min

(3/2, +1/2) → (3/2, -1/2)

transition

\(H = 504.33 \text{ G} \)

\[\nu \text{ (Br}^{80}) \text{ (Mc/sec)} \]

Fig. 3.
Br80m resonance curves

$(13/2, -9/2) \rightarrow (13/2, 11/2)$ transition
$H = 238.62$ G

Counts/min

$\nu (Br^{80m})$ (Mc/sec)

$(11/2, -7/2) \rightarrow (11/2, 9/2)$ transition
$H = 238.62$ G

$\nu (Br^{80m})$ (Mc/sec)

Fig. 4.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.