Solenoid Transport of an Intense Ion Beam

Authors
Coleman, J.E.
Haber, I.
Henestroza, E.
et al.

Publication Date
2006-08-01
Solenoid Transport of an Intense Ion Beam

J.E. Colemana, I. Haberb, E. Henestrozac, P.K. Royd, W.M. Sharpd, J.L. Vayd, D.R. Welche, W.L. Waldronc, J. Armijoc, D. Bacac, and P.A. Seidlb

a Department of Nuclear Engineering, University of California at Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, USA
b University of Maryland, College Park, MD 20742-3511, U.S.A.
c Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
d Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
e Voss Scientific, Albuquerque, NM 87108, USA.

Abstract. Future WDM and HEDP experiments may use solenoids for transverse focusing of low energy, space-charge dominated ion beams during acceleration. An experiment to transport a 10 μs long, singly charged potassium ion bunch at an ion energy of 0.3 MeV and current of 45 mA through a solenoid lattice (STX) has been commissioned at LBNL. The beam should establish a Brillouin-flow condition, particle rotation at the Larmor frequency, with fields greater than 2T. The principal objectives of the STX are to match and transport the space-charge dominated ion beam and to study mechanisms that would degrade beam quality such as focusing-field aberrations, beam halo, spacing of lattice elements, and electron-cloud and gas effects. A qualitative comparison of experimental and calculated results are presented, which include time resolved transverse phase-space of the beam at different diagnostic planes throughout the focusing lattice, beam current density and beam-induced gas desorption, ionization and electron effects.

(This work was supported by the U.S. D.O.E. under DE-AC02-05H11231)