Title
PASSIVE DETECTORS

Permalink
https://escholarship.org/uc/item/5ph5w8wf

Author
Thomas, R.H.

Publication Date
2010-06-17

Peer reviewed
Presented at the Course on Advances in Radiation, Lecture No. 10, International School of Radiation Damage and Protection, Ettore Majorana Centre for Scientific Culture, Erice, Italy, September 1979

PASSIVE DETECTORS

Ralph H. Thomas

September 1979
PASSIVE DETECTORS
Course on Advances in Radiation, International School of
Radiation Damage and Protection Ettore Majorana Centre for
Scientific Culture, Erice, Italy, September 1979

Ralph H. Thomas
Lawrence Berkeley Laboratory
University of California
Berkeley, California

"They also serve who only stand and wait"
John Milton, 1608-1674
Sonnet XIX "On His Blindness"

INTRODUCTION

In this lecture I shall interpret the term "passive" radiation detector as meaning one that will yield up its information after an irradiation is completed, and often only after some processing of the detector to obtain the data or some considerable data processing. Examples of such detectors would thus be:

(1) Nuclear Emulsion.
(2) Activation Detectors (often imprecisely referred to as threshold detectors).
(3) Integrating Ionization Chambers.
(4) Thermoluminescent Dosimeters.
NUCLEAR EMULSIONS

The use of nuclear emulsion as a detector of ionizing radiations is, of course, as old as the discovery of radioactivity itself. Its use has persisted, particularly because nuclear emulsion provides a graphic presentation of nuclear interactions. It is partly for this reason that nuclear emulsions have played an extremely important role in the discovery of fundamental particles.1 Whenever a new source of radiation is developed, almost inevitably one of the first exposures made is with some form of nuclear emulsion. As an example, Fig. 1 shows a microphotograph of the tracks of 2.1 GeV/amu nitrogen ions tracks in Ilford G5 emulsion. This emulsion was exposed shortly after heavy ions were accelerated at the Bevatron2,3 and shows $^{14}\text{N}_7$ ion fragmenting into two helium ions and three protons.

Shielding Experiments

Thick nuclear emulsions were used in some of the earlier high-energy shielding experiments.4-6 Figure 2 shows a photomicrograph of a 10 GeV neutron in 600 μ Ilford G5 emulsion.7 The use of emulsion facilitated studies of mean energy of the high energy particles as a function of depth in shielding, growth of the neutral component within the shield, angular divergence of

Figure 1. At a point on the left hand side of the figure an incident $^{14}\text{N}_7^+$ ion fragments into two helium ions and three protons. The incident beam energy was 2.1 GeV/amu, and the nuclear emulsion was Ilford G5. (Courtesy of H. Heckmann).
the beam, in addition to the overall attenuation of particle flux with depth. Thus, for example, Fig. 3 shows the fraction of "neutral" stars as a function of depth in steel irradiated with an incident 20 GeV/c proton beam.

Absolute Beam Intensity Measurements

Nuclear emulsions may be used for absolute beam intensity measurements. Smith et al. have used Kodak NTA films to measure the intensity of carbon, oxygen, and neon ions. The films were exposed at an angle of 45° to the incident beam and the large ionization of the heavy ions produced dense tracks which are very easily identified (Fig. 4). Optimum exposures produce 40-20 tracks in a 245 μm square field. The upper limit to track density that could be scanned with an air objective lens on the microscope (magnification 430x) was about 4 x 105 tracks cm⁻². An oil immersion objective would raise this limit by about a factor of ten. This technique of beam intensity measurement was applied to the determination of radionuclide production cross sections, measurement of the efficiency of
Figure 3. The fraction of "neutral" stars as a function of depth in steel. Incident proton momentum 20 GeV/c. A "neutral" star is defined as one with no charged primary in the backward hemisphere (after Citron et al.).

Figure 4. Photomicrograph of carbon ion tracks in Kodak NTA emulsion (magnification 430x).
thermoluminescent dosimeters,10-12 and to dosimetry in radio-biological experiments.13-15

Personal Dosimetry

At the present time only three types of personal neutron dosimeters are commonly used in radiation protection.16 The oldest and still most popular personal dosimeter is Kodak NTA film (or equivalent emulsions produced by other manufacturers), although in recent years it has become somewhat fashionable to denigrate the use of this dosimeter.17 This criticism is based upon the inherent difficulties of the dosimeter, its instability, and its energy response. The dosimeter is read by detecting individual recoil proton tracks in a thin (25 µm) nuclear emulsion, using an optical microscope. While the technique seems laborious to those who prefer "gadgetry," it is, nevertheless, in the hands of a skilled technician extremely reproducible, quite quick, and inexpensive.

It has been known for many years that the latent image of the proton recoil tracks is unstable and fades, particularly at high temperature and humidities.18 Much has been made of this fading19 so that there has been a decline in the popularity of NTA film in recent years. This is, in the view of the writer, an error since it is certainly preferable to provide some personal dosimetry—rather than none of all! In fact the causes of latent image fading are well understood and it may be adequately controlled by careful packaging.20,21

The most serious disadvantage of NTA film is that it is limited to neutrons in the energy range from 0.5 MeV to about 20 MeV. Figure 5 shows the energy response of NTA film per unit neutron fluence, compared with the dose equivalent per unit fluence given by the ICRP. However, despite this limitation NTA film is of great value of a personal neutron dosimeter around high energy particle accelerators which the largest fraction of dose equivalent is due to neutrons from 0.5–20 MeV.23 Some years ago the use of thick emulsions (200 µm–600 µm) was proposed for neutron monitoring at high energies24,25 but this suggestion has not been taken up.
Figure 5. Energy response of NTA film.

Figure 6a. Proton spectrum measured in an emulsion exposed to 14 MeV neutrons.
Neutron Spectrometry

Nuclear emulsions have been used extensively for neutron spectroscopy and details of the techniques used may be found in Patterson and Thomas. Two principal methods are used:

(a) Proton recoil spectrum measurement

(b) Star prong counting.

In the first technique the spectrum of recoil protons produced by neutron interactions in the emulsion is first measured, and then the neutron spectrum that produced it calculated. Figures 6a and 6b gives an example of the result obtained.
Figure 7 shows examples of neutron spectra measured by Lehmann and Fekula around the Bevatron. The general form of the neutron spectra (measured between 0.7 and 20 MeV) at eight locations near the Bevatron is a broad peak in the 0.5–2 MeV region, followed by a smooth hundred-fold drop in value between the peak at 12 MeV.

Figure 7. The neutron spectra derived from measurements of the recoil proton spectra in nuclear emulsions exposed at several locations around the Bevatron. In each diagram: A identifies the peak at 0.6 MeV due to the $^{14}N(n,p)^{14}C$ reaction of thermal neutrons; B identifies the 1.25-MeV peak due to α-particles from the decay of the naturally radioactive constituents of the emulsion; the curve C shows the smoothed recoil proton spectrum corrected for background, and the curve D shows the derived neutron spectrum. The notations B–25, B–27, etc., identify location of the emulsion exposure (after Lehman and Fekula, 1964).
Figure 8. Average number of grey prongs per star as a function of neutron energy.

Figure 9. A graph relating the number of gray prongs per star and different shapes of neutron spectra characterized by the logarithmic slope, γ, and the maximum energy of the spectra.
Table 1. Spectral Indices Obtained from Measured Values of the Average Number of Gray Prongs per Star.

<table>
<thead>
<tr>
<th>Location</th>
<th>E_{max} (MeV)</th>
<th>\bar{n}_g</th>
<th>Spectral index, γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>184-inch cyclotron between Bays 10 and 11</td>
<td>730</td>
<td>0.44</td>
<td>0.75</td>
</tr>
<tr>
<td>Bevatron west tangent tank shielding wall</td>
<td>6,200</td>
<td>0.55</td>
<td>1.50</td>
</tr>
<tr>
<td>Bevatron Col. 7, main floor</td>
<td>6,200</td>
<td>0.32</td>
<td>1.68</td>
</tr>
<tr>
<td>Bevatron mezzanine</td>
<td>6,200</td>
<td>0.27</td>
<td>1.78</td>
</tr>
<tr>
<td>CERN PS</td>
<td>14,000</td>
<td>0.29</td>
<td>1.80</td>
</tr>
<tr>
<td>CERN PS</td>
<td>14,000</td>
<td>0.21</td>
<td>1.95</td>
</tr>
<tr>
<td>CERN PS</td>
<td>28,000</td>
<td>0.45</td>
<td>1.68</td>
</tr>
<tr>
<td>White Mountain 12,000 ft. altitude</td>
<td>(50,000)</td>
<td>1.07</td>
<td>1.32</td>
</tr>
<tr>
<td>White Mountain 14,000 ft. altitude</td>
<td>(500,000)</td>
<td>1.04</td>
<td>1.35</td>
</tr>
</tbody>
</table>

The second application of emulsions to neutron spectroscopy is to determine the average number of gray prongs, \bar{n}_g, produced in the nuclear interactions. For monoenergetic neutrons there is a strong relationship between the average number of gray prongs per star and the incident neutron energy. This relationship has been determined by Remy\(^28\) and by Patterson et al.\(^29\) and is shown in Fig. 8. Patterson et al.\(^29\) showed how to use this relationship to determine the characteristics of hard neutron spectra found around, for example, high energy accelerators. Under the assumptions that these spectra are smooth and may be characterized by an index,\(^*\) γ, that the cross section for star production is independent of neutron energy and that a maximum neutron energy may be defined, Patterson et al. calculated the relationship between γ and \bar{n}_g shown in Fig. 9, where several curves are shown for differing maximum energies. Thus, under the assumptions of the method, if \bar{n}_g is determined, E_{max} known (e.g., as for example at an accelerator) then γ may be determined. Experience has shown that around accelerators γ has values usually in the range 1.3–20 (see Table 1).

Where independent checks have been possible—for example when spectra have been determined by alternative techniques, e.g., activation detectors—quite good agreement was obtained.\(^30\) Patterson et al. concluded that "The study of stars in nuclear emulsion extends the usefulness of emulsion methods in nuclear spectroscopy to energies much higher than the upper limits of recoil proton techniques."\(^29\)

\(^*\)The neutron differential energy spectrum $d\phi/dE$ is written: $d\phi/dE = E^{-\gamma}$.
Table 2. Properties of Some Commonly Used Threshold Detectors.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Reaction</th>
<th>Half-Life</th>
<th>Energy range</th>
<th>Typical minimum flux density measurable*</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF$_3$ proportional counter</td>
<td>10B(n,α)7Li</td>
<td></td>
<td>Thermal</td>
<td>10^2</td>
<td></td>
</tr>
<tr>
<td>Gold foil</td>
<td>197Au(n,γ)198Au</td>
<td>2.7 days</td>
<td>Thermal</td>
<td>10^2</td>
<td></td>
</tr>
<tr>
<td>Indium foil</td>
<td>115In(n,γ)116In</td>
<td>54 min</td>
<td>Thermal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Moderated BF$_3$ counter</td>
<td>10B(n,α)7Li</td>
<td></td>
<td>Thermal-15 MeV</td>
<td>10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Moderated gold foil</td>
<td>197Au(n,α)198Au</td>
<td>2.7 days</td>
<td>Thermal-15 MeV</td>
<td>10^2</td>
<td></td>
</tr>
<tr>
<td>Moderated indium foil</td>
<td>115In(n,α)116In</td>
<td>54 min</td>
<td>Thermal-15 MeV</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Thorium fission counter</td>
<td>Th(n,fiss.) fission products</td>
<td></td>
<td>>2 MeV</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sulphur</td>
<td>32S(n,p)32P</td>
<td>14.3 days</td>
<td>>2.5 MeV</td>
<td>10^3</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>27Al(n,α)24Na</td>
<td>15 h</td>
<td>>6 MeV</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>27Al(n,spall.)7Be</td>
<td>53.4 days</td>
<td>>25 MeV</td>
<td>10^3</td>
<td></td>
</tr>
<tr>
<td>Polystyrene: plastic scintillator</td>
<td>12C(n,2n)11C</td>
<td>20.4 min</td>
<td>>20 MeV</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Polystyrene: plastic scintillator</td>
<td>12C(n,spall.)7Be</td>
<td>53.4 days</td>
<td>>30 MeV</td>
<td>10^3</td>
<td></td>
</tr>
<tr>
<td>Bismuth fission chamber</td>
<td>Bi(n,f) fission products</td>
<td></td>
<td>>50 MeV</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>199Hg(n,spall.)149Tb</td>
<td>4.1 h</td>
<td>>600 MeV</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

*Based on 1 h measurement.
ACTIVATION DETECTORS

The use of threshold detectors in neutron dosimetry is a well understood and universally accepted technique in radiation physics. Their use has found widespread application at most high-energy particle accelerators and has been described in several articles, reviews and text books.23,26,30-34

Threshold detectors may be both active35 and passive and both types of detector are frequently used in tandem in radiation surveys or other measurements.36 We are particularly concerned here with threshold detectors that utilize their own induced radioactivity to monitor radiation.

Table 2 summarizes some of the threshold reactions commonly used as accelerator laboratories. Column 5 indicates the typical sensitivity which may be readily achieved for these detectors. Sensitivity is, however, clearly a function of detector size and the precise experimental techniques employed, and the values indicated are intended only as a general guideline. They indicate the order of magnitude of minimum flux density that may be detected after a measurement lasting one hour. For precise details, the reader is referred to the original sources. Furthermore, Table 2 is not intended to be comprehensive but to indicate the reactions in common use. Particular laboratories may have their own preferred specialties that they have perfected.

It may be seen from Table 2 that threshold detectors are of high sensitivity available over the entire energy range normally of interest at accelerators (0.1-100 MeV). No details of the shape of the neutron spectrum below about 1 MeV will be obtained using only one size of moderator with a thermal neutron detector. Fortunately such detail is not often required for two reasons: (1) because the dose-equivalent contribution is not large, and (2) because, below 10 keV, the dose-equivalent per unit fluence is independent of neutron energy. In principle, should more detailed information of the spectrum be required in the energy region from 10^{-8} to 1 MeV, several moderators of different size could be used.37

At high radiation intensities (\geq10 rem/h) several less sensitive reactions provide additional information. Figures 10a and 10b show the variation of sensitivity with energy for the reactions listed in Table 2.23
Figure 10a. Response functions of four threshold detectors used to determine neutron spectra in well-shielded locations at high-energy accelerators. (After Thomas Ref. 23).

Figure 10b. Response functions for additional detectors used to determine neutron spectra in high radiation levels at high-energy accelerators. (After Thomas Ref. 23).
Activation detectors are widely used radiation measurements at accelerators. Typical uses include:

(a) Shielding Experiments
(b) Neutron Spectrum Measurements
(c) Radiation Surveys

Shielding Studies

A great many shielding studies at high energy accelerators have been made using activation detectors. Many of these

Figure 11. Relative flux density distribution measurements along paths drawn at several angles to the line of incidence of the proton beam, from the point of entry on a concrete shield. Measurements made with the 27Al + 24Na reaction. Incident proton energy 6 GeV. (After Smith et al. Ref. 34.)
measurements have been reviewed by Patterson and Thomas. Figures 11 and 12 show typical examples of the data that may be obtained. Figure 11 shows the relative flux density distributions measured in a concrete shield bombarded by 6 GeV protons. The reaction used was the production of ^{24}Na from ^{27}Al (6 MeV threshold).

![CERN Experiment - Theoretical Fit to Data](image)

Figure 12. Measurements of neutron flux density in the earth shield of the CERN 28 GeV proton synchrotron. The crosses show experimental data points measured with the $^{27}\text{Al} + ^{24}\text{Na}$ reaction while the circles show calculated values. (Gilbert et al. Ref. 30).
Figure 12 shows experimental data using the same reaction obtained in the earth shield of the 28 GeV CERN Proton Synchrotron. The neutron flux density measured is plotted as a function of distance from the proton beam (depth) and along the beam direction (z). Measured values are in excellent agreement with those calculated using a computer program FLUXFT.30

To determine the spectrum a solution for the neutron spectrum $\phi(E)$ is sought from a set of activation equations of the form

$$A_j = C_j \int_{E_{\text{min}}}^{E_{\text{max}}} \sigma_j(E) \phi(E) \, dE \quad \text{for} \quad j = 1, 2, \ldots, m \quad (1)$$

where

- A_j is the saturation activity of the jth detector,
- $\sigma_j(E)$ is the cross-section for the appropriate reaction at energy E,
- C_j is a normalizing constant between activity and flux density, and
- $E_{\text{min}}, E_{\text{max}}$ are the minimum and maximum neutron energies in the spectrum.30

Gilbert et al.30 have described the use of an interactive technique that employs on-line facilities of a CDC-6600 computer for the determination of neutron spectra from a few threshold detectors: "TELLY." The operator indicates to the computer his best estimate of the neutron spectrum which will match his experimental data. This is done by drawing the spectrum with a light pen on the screen of a CRT display. The computer then calculates the detector responses and presents them for comparison with the experimental data. The operator then systematically modifies his suggested spectra to the computer until, after a few iterations, the detector responses are matched with an accuracy reflecting the experimental errors. TELLY was found to work well, avoiding many of the pitfalls of more "sophisticated" methods of spectrum analysis. Its only drawback is that it is somewhat difficult to use in a systematic manner when many detectors with overlapping regions of sensitivity are used.

Equation (1) is a degenerate case of a Fredholm integral of the first kind. Formal methods of solution are not applicable when, as is the case with activation detectors, the A_j's are known only as a set of discrete points.39
Routti has critically reviewed the numerical techniques commonly used for solution of such first-order Fredholm equations, and the interested reader is referred to his paper for a detailed account.

Early attempts to obtain neutron spectra from activation detector data were frustrated by difficulties such as non-uniqueness or an oscillatory (and even negative) character to the solutions to the Fredholm equations. Some of these problems arise from the mathematical characteristics of the equations to be solved, while others are related to the specific method of solution adopted.

Routti suggests that a suitable method of solution must be able to combine the information contained in the measured data with any already existing information of the neutron spectrum. Such prior information is almost always available on physical grounds. Thus, for example, the solution must be non-negative and zero beyond a given maximum energy. In addition, the spectrum of radiation penetrating thick shields constructed of a complex material such as concrete may be assumed to be smooth. Some information on intensity or shape may be available from previous measurements. It is important that all this prior information be properly taken into account in the solution technique selected. However, care must be taken to ensure that the consequent additional constraints imposed on the spectrum do not prevent it from matching the measured response or from assuming any physically acceptable shape.

Any appropriate solution must fulfill two basic measurements:

(a) The neutron spectrum which is found to be a solution to the activation equations must accurately match the detector responses; and

(b) if many solutions are found that fulfill condition (a), there should be a flexible way to apply physical prior information on the solution so that the most appropriate solution may be selected.

It is important that any solution method be tested to ensure that it meets all these requirements. This is most conveniently done by computing the response of the system to test spectra. The resolutions of the system and the influence of experimental errors or uncertainties in the detector response functions may then be systematically studied.

Routti has applied a generalized least-squares method to solve the activation equations. In his technique, the solution is forced to be non-negative and prior information on the
spectrum can be incorporated in a very flexible way. The technique and the computer program LOUHI, written to perform the analysis, have been subjected to the tests described in the previous paragraph. These tests show that the method meets the two basic requirements for an appropriate solution.

Considerable experience has now been obtained with LOUHI which has been found extremely reliable and capable of calculating neutron spectra with adequate accuracy for radiation protection purposes. A desirable feature of LOUHI is that, in addition to providing activation detector data, it may be used to determine neutron spectra from Bonner sphere or nuclear emulsion data.

Figure 13. Typical high energy accelerator neutron spectra. The spectra are arbitrarily displaced on the vertical scale to show the differences between the spectra. The measurements shown here were made at the Bevatron and the CERN 28-GeV Proton Synchrotron - above concrete ("Bridge") and earth ("Ring Top"). In the case of the ring top measurements were made with activation detectors (solid line), Ilford L4 emulsion (dots), and by star prong counting (dashed lines). The Hess cosmic ray spectrum is shown for comparison.
It is of interest to compare neutron spectra obtained using threshold detectors with those obtained from nuclear emulsions. This was possible in an experiment carried out at CERN where neutron spectra outside the shielding of the 28 GeV CERN proton synchrotron were determined by several methods. Figure 13 shows several neutron differential energy spectra measured outside accelerator shields. In the case of one (labelled "Ring Top"), which was measured above the earth shield of the CPS neutron spectrum measurements, were made with activation detectors, proton recoil spectrum and gray prong number. The three spectra obtained are shown in the figure and are in reasonable agreement.

Fig. 14. Neutron differential energy spectra unfolded from data obtained in an aircraft flying at 41,000 ft, geomagnetic latitude 20°N, for various values of the smoothing parameter γ. (Stephens et al. Ref. 40).
Stephens et al. have investigated the uncertainties in spectra unfolded by the LOUHI routine for the particular case of Bonner Spectrometer data. The LOUHI unfolding routine permits varying constraints to be placed on the rapidity and magnitude of fluctuations in the solutions it generates. This is achieved by the use of a smoothing parameter, γ, which normally is given values between 0 the 1.0. The higher value of γ, the more constrained are fluctuations in the solution generated and the lower the ability to resolve sharp structure in the spectrum.

Figure 14 shows solutions for values of $\gamma = 0.1$ (moderately damped) and $\gamma = 0.01$ (slightly damped). Significant differences

![Figure 15. Differential Neutron Energy Spectra measured at the Bevatron (LBL) and the Stanford 20 GeV electron linear accelerator (McCaslin et al. Ref. 41).]
in the calculated spectra are evident, but it is not entirely clear whether this inconsistency is due to fluctuations of statistical origin or systematic errors introduced by the use of two detectors of different size and a mixed set of moderators. However, these authors also showed that the addition of data taken with aluminum activation detectors significantly limit the uncertainty in derived neutron spectra.

For some years there had been some difference in opinion between accelerator health physicists as to whether there was any significant dose equivalent contribution from neutrons with energy greater than 20 MeV. Activation detectors were applied to this problem. Figure 15 shows the neutron differential energy spectra measured outside shielding at the 6 GeV proton synchrotron at Berkeley (the Bevatron) and the Stanford 20 GeV electron linear accelerator. From these spectra, the integral space dose equivalent curves may be calculated (Figs. 16 and 17). The integral dose equivalent spectra are quite similar and clearly show the presence of a significant high-energy neutron fluence at the Stanford Linear Accelerator, confirming theoretical predictions by de Staebler.

![Figure 16. Integral dose equivalent spectrum (LBL).](image-url)
Despite the difficulties in measuring neutron spectra with threshold detectors the method may be used with some confidence as evidenced by the reasonable agreement between the experimental measurements of the cosmic-ray neutron spectrum by Hess et al.43 made in 1958 and the relatively recent calculated values of Armstrong et al.44 These workers used a Monte Carlo code to compute the production of protons, charged pions, and neutrons by the incident galactic protons, and the subsequent transport of these particles down to energies of 12 MeV. The calculated production of neutrons of energy \(\leq 12 \text{ MeV}\) calculated by the Monte Carlo code was used as input to a discrete-ordinates code to obtain the low-energy neutron spectrum. Figure 18 shows the results of these calculations and an absolute comparison with the experimental data of Hess et al.43 at atmospheric depths of 200 and 1,033 g/cm\(^2\). The calculated and measured spectra differ somewhat at lower energies, but are in very good agreement at high energies.

The Use of Activation Detectors to Measure High-LET Radiation

Activation dosimeters have been used with great success in the absolute determination of particle fluences at proton
Figure 18. Neutron flux spectra at various depths in the earth's atmosphere produced by galactic protons near solar minimum. These calculations are compared with calculations of Lingenfelter and the measurements of Hess et al. (λ = geomagnetic latitude) [Armstrong et al. Ref. 44].
accelerators and there is no reason to doubt that they might be used to monitor high-energy heavy-ion beam intensities.

The specific advantages of activation dosimeters are:

(1) Suitable reactions give high activity enabling relative data of high statistical precision to be obtained. Such reactions may therefore be used as a standard with which the reproducibility and linearity of all other dosimetric systems may be compared.

(2) The use of several activation detectors can give information on incident beam purity.

Smith has reported initial tests of aluminum activation detectors irradiated by 375 MeV/u Ne $^{10+}$ ions. The induced ^{24}Na activity was measured using a NaI(Tl) γ-spectrometer situated in the Health Physics Department Low Background Facility.

Sufficient activity is induced in 40 g of aluminum to easily obtain a statistical precision of ± 1 percent for exposures corresponding to 30 rad (the efficiency of the spectrometer used was ~ 35 percent for ^{24}Na). Competing radionuclides produced were ^{11}C (20.3 min) and ^{18}F (110 min). The production of ^{18}F in aluminum is capable of comparable statistical precision to that obtained counting ^{24}Na, but correction for the production of ^{11}C (which also emits positrons) is an added complication.

Table 3 summarizes some possible activation reactions. As a general rule, those reactions that produce radionuclides with half-lives comparable to the length of irradiation will prove to be most convenient.

In radiobiological experiments it will often be convenient to use activation targets of composition similar to that in tissue, such as polyethylene, lucite, or polystyrene, in which the production of ^{11}C from ^{12}C is a convenient reaction. For absolute dosimetry, the reaction cross section must be known. Measurements for the production cross section of ^{11}C by 375 MeV/u Ne $^{10+}$ ions in carbon give a value 75 ± 7 mb. A reasonable compromise between energy loss in the target and sensitivity puts the lower limit of sensitivity for this reaction at an absorbed dose of ~ 10 rad in tissue.

Activation detectors would be more acceptable in some experiments if they could be placed behind the irradiated biological sample to determine the particle fluence leaving the experiment, but it is then necessary to study the production of radionuclide to be measured as a function of depth in an
Table 3. Some Useful Target Activation Reactions that Produce Radionuclides with Half-lives Longer than about 10 Min.

<table>
<thead>
<tr>
<th>Target material</th>
<th>Reactions useful for dosimetry</th>
<th>Competing and Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 27Al in aluminum</td>
<td>27Al → 24Na</td>
<td>15.0 hr e-</td>
</tr>
<tr>
<td></td>
<td>27Al → 24Mg</td>
<td>2.60 yr e-capt, γ*</td>
</tr>
<tr>
<td></td>
<td>27Al → 18F</td>
<td>109.7 min γ*</td>
</tr>
<tr>
<td></td>
<td>27Al → 13N</td>
<td>9.93 min γ*</td>
</tr>
<tr>
<td></td>
<td>27Al → 11C</td>
<td>20.34 min γ*</td>
</tr>
<tr>
<td></td>
<td>27Al → 7Be</td>
<td>53.6 day e-capt</td>
</tr>
<tr>
<td>2. 9Be in beryllium</td>
<td>9Be → 7Be</td>
<td>53.6 day half-life, e-capt</td>
</tr>
<tr>
<td>3. 12C in graphite,</td>
<td>12C → 11C</td>
<td>20.34 min γ*</td>
</tr>
<tr>
<td>polystyrene, or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polyethylene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 19F in Teflon</td>
<td>19F → 18F</td>
<td>109.7 min γ*</td>
</tr>
<tr>
<td></td>
<td>19F → 13N</td>
<td>9.93 min γ*</td>
</tr>
<tr>
<td></td>
<td>19F → 11C</td>
<td>20.34 min γ*</td>
</tr>
<tr>
<td></td>
<td>19F → 7Be</td>
<td>53.6 day e-capt</td>
</tr>
<tr>
<td>5. 14N in boron</td>
<td>14N → 13N</td>
<td>9.93 min γ*</td>
</tr>
<tr>
<td>7Be nitride</td>
<td>14N → 11C</td>
<td>20.34 min γ*</td>
</tr>
<tr>
<td></td>
<td>14N → 7Be</td>
<td>53.6 day e-capt</td>
</tr>
<tr>
<td>6. 16O in water</td>
<td>16O → 13N</td>
<td>9.93 min γ*</td>
</tr>
<tr>
<td></td>
<td>16O → 11C</td>
<td>20.34 min γ*</td>
</tr>
<tr>
<td></td>
<td>16O → 7Be</td>
<td>53.6 day e-capt</td>
</tr>
<tr>
<td>7. 16O in beryllium</td>
<td>16O → 13N</td>
<td>9.93 min γ*</td>
</tr>
<tr>
<td>oxide</td>
<td>16O → 11C</td>
<td>20.34 min γ*</td>
</tr>
<tr>
<td></td>
<td>16O → 7Be</td>
<td>53.6 day e-capt</td>
</tr>
<tr>
<td>8. 28Si, 29Si, 30Si</td>
<td>in fused quartz</td>
<td></td>
</tr>
</tbody>
</table>
irradiated sample. Smith has reported some preliminary studies of the distribution of 18F and 24Na in aluminum irradiated by 375 MeV/u Ne$^{10+}$ ions. Figure 19 shows the distribution of 18F in aluminum. The initial portion of the 18F curve is caused by the production of 18F fragments from the original neon ion beam. Such fragments have a range of ~ 17 g cm$^{-2}$ in aluminum and are thus seen superposed on the continuous distribution of 18F due to target activation. Beyond the range of the primary ions ($\sim 16-17$ g cm$^{-2}$), 18F is produced by the reaction of lighter fragments with the target aluminum (residual activation). The total 18F due to stopped fragments is approximately equal to that due to target activation. Residual activation is not insignificant being nearly of the same magnitude as that due to target activation at the entrance of the stack. The total quantity of residual 18F activity is, however, only a few percent of that due to target activation because it rapidly decreases with increasing depth, beyond the primary ion range.

The distribution of 24Na is shown in Fig. 20 and exhibits the typical buildup of activity as a function of depth observed in high-energy irradiations. Beyond the range of the primary ions there is a sharp reduction in 24Na production. Residual activation is seen to be higher beyond the neon ion range than the target activation at the target entrance. Since 24Na is
heavier than the primary ions (20Ne), autoactivation is not feasible.

These preliminary studies indicate the need to study the three mechanisms of activation in some detail if activation techniques are to be used for absolute dosimetry behind considerable thickness of material. Smith has reported approximate cross sections for the production of 18F and 24Na in several materials irradiated by 375 MeV/amu Ne10+ ions. Table 4 summarizes these values.

Recently, work at Los Alamos has used the production of 24Na in 27Al for pion ir-vivo dosimetry. They report that the 24Na activity is primarily produced by stopping π- mesons, but that 15-25 percent of the activity results from neutrons. Comparison of the induced activity distributions with the high-LET absorbed dose measured by a silicon detector and a Rossi chamber show that the 24Na activity may be used as a good measure of the high-LET dose.

IONIZATION CHAMBERS

The charge Q, collected under conditions of electronic equilibrium as a result of the passage of a number N of particles
Table 4. 11C Production Sections—375 MeV/u Ne10 Ions.

<table>
<thead>
<tr>
<th>Target</th>
<th>Reaction</th>
<th>Production cross-section (m barn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>24Na</td>
<td>63</td>
</tr>
<tr>
<td>Si</td>
<td>24Na</td>
<td>15</td>
</tr>
<tr>
<td>S</td>
<td>24Na</td>
<td>11</td>
</tr>
<tr>
<td>Al</td>
<td>18F</td>
<td>40</td>
</tr>
<tr>
<td>Si</td>
<td>18F</td>
<td>36</td>
</tr>
<tr>
<td>S</td>
<td>8F</td>
<td>16</td>
</tr>
</tbody>
</table>

across the plates of a parallel-plate ionization chamber placed normally to a uniform, parallel charged particle beam, is related to the average energy required to create an ion pair, w, by the equation:

$$Q = \rho e \frac{N}{w} \Delta E$$ \hspace{1cm} (2)

where w is measured in eV and

- ρ is the density of nitrogen in the ionization chamber, \(g \text{ cm}^{-3} \);
- e is the electronic charge, coulomb;
- ΔE is the energy absorbed in the gas, eV.

If the energy of the incident particles is high, the energy loss in passing through the gas is small and equation (2) may be written:

$$Q = 10^6 \rho e \frac{(dE)}{dx}^{N_2} \cdot \frac{N}{w}$$ \hspace{1cm} (2a)

where s is the separation between the collection plates, cm;

$$\frac{(dE)}{dx}^{N_2}$$ is the mass stopping power of the particles in the \(N_2 \) nitrogen within the chamber, MeV g$^{-1}$ cm2.
Equation (2a) may be related to the absorbed dose in tissue, D, by the equation:

$$D = 10^5 Q \frac{\bar{w}}{m} S'$$

where m is the mass of irradiated gas in the chamber (in grams)

S' is the ratio of stopping powers of tissue to gas for the incident particles.

The Biology and Medicine Division of the Lawrence Berkeley Laboratory has designed large parallel-plate, nitrogen-filled ionization chambers for dosimetry in radiobiological experiments. These chambers are constructed so as to present a minimum of absorbing material (~0.05 g cm$^{-2}$) in the heavy ion beam.
The electronic equilibrium established in the air path through which the beam passes before entering the chamber is essentially maintained as the beam passes through the chamber. The collecting electrodes of the chambers are circular in cross section, and are spaced 1 cm from the high voltage electrode and placed at right angles to the incident beam direction.

Many radiobiological experiments at the Bevalac utilize rather large irradiation fields (typical beam dimensions might in some cases be a fullwidth, half maximum of 10-12 cm). Chambers have been constructed with collecting electrodes up to 18 cm in diameter to make measurements in such radiation fields. Each collecting electrode is divided into several regions which make it possible to use the chambers to explore the uniformity of the radiation fields used in the experiments (Fig. 21).

For accurate dosimetry, values of \(\bar{w} \) must therefore be known. There were until recently no values of \(\bar{w} \) published in the literature for high energy ions (a few hundred MeV/amu). Thomas and his colleagues have reviewed the literature and described measurements of \(\bar{w} \) for 250 MeV/amu \(^{12}C_{6+} \) ions, 375 MeV/amu \(^{20}Ne_{10+} \) ions and 479 MeV/amu \(^{40}Ar_{18+} \) ions.\(^{51,52}\)

Table 5 summarizes the values obtained. The absolute errors are \(\pm 5 \) percent and just large enough to allow the interpretation that there is no significant difference between one another, and even that they do not differ from the value used for electrons \(w_p \), of \(34.6 \pm 0.3 \) eV/ion pair.\(^{53}\) If this interpretation of the data is chosen then the suggestion by Bakker and Segrè that \(\bar{w} \) for high velocity particles would tend to the value \(w_e \) (Ref. 54) is confirmed. This suggestion was, however, based upon the empirical evidence available at that time (1961). Theoretically, there are grounds for expecting the value of \(\bar{w} \) to be dependent upon LET. As the LET of the ion increases, there will be a correspondingly greater energy density around the

<table>
<thead>
<tr>
<th>Ion Species</th>
<th>Energy (MeV/amu)</th>
<th>(\bar{w}) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{12}C_{6+})</td>
<td>250</td>
<td>36.3 (\pm) 1.9</td>
</tr>
<tr>
<td>(^{20}Ne_{10+})</td>
<td>375</td>
<td>35.3 (\pm) 1.5</td>
</tr>
<tr>
<td>(^{40}Ar_{18+})</td>
<td>479</td>
<td>34.6 (\pm) 0.9</td>
</tr>
</tbody>
</table>
particle trajectory, which in turn increases the probability of ionic recombination, leading to higher values of w. However, comparison of the published values of w shows this variation is probably not larger than about 10-15 percent.55,56

The data of Thomas et al.52 do indeed show a trend of decreasing w with increasing charge state of the ion and increasing energy. Their accuracy, however, does not permit definitive conclusions and additional and more accurate measurements are needed.

The values of w obtained thus far give estimates of absorbed dose in tissue which are in good agreement with values obtained by other experimental techniques. Thus, Patrick et al.13 have compared measurements of the entrance absorbed dose in soft tissue irradiated by 250 MeV/amu C6+ ions using a nitrogen filled ionization chamber and 7LiF thermoluminescent dosimeters. Table 6 summarizes the results. The error for the ionization chamber measurements were ±5 percent. Only statistical errors are included for the TLD measurements in the table. The absolute uncertainty was about ±3 percent. The two sets of absorbed dose estimates are seen to be in good agreement.

\begin{table}[h]
\centering
\begin{tabular}{lllrr}
\hline
Irradiation & Group & Ionization & Entrance Absorbed Dose in Tissue & Ratio \\
No. & No. & (red.) & (LiF) & ionization \\
 & & & chamber to TLD \\
\hline
1 & a & 64.0 ± 3.2 & 61.2 ± 0.5 & 1.045 \\
1 & b & 96.6 ± 4.8 & 93.6 ± 0.9 & 1.032 \\
2 & a & 128 ± 6.4 & 124 ± 2 & 1.032 \\
2 & b & 193 ± 10 & 186 ± 4 & 1.038 \\
\hline
\end{tabular}
\caption{Comparison of Entrance Absorbed Dose in Issue Irradiated by 250 MeV/u Ions}
\end{table}

aUsing a value $W = 36.6$ eV/ion pair. Errors ±5 percent.

bUsing a value $e = 0.89$. Statistical errors only.
Table 7. Characteristics of TL Phosphors.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>LiF</th>
<th>LiO{sub}2{superscript}Mn</th>
<th>CaF{sub}2{superscript}Mn</th>
<th>CaF{sub}2{superscript}nat</th>
<th>CaSO{sub}4{superscript}Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (gm/cc)</td>
<td>2.64</td>
<td>2.3</td>
<td>3.18</td>
<td>3.18</td>
<td>2.61</td>
</tr>
<tr>
<td>Effective atomic no.</td>
<td>8.2</td>
<td>7.4</td>
<td>16.3</td>
<td>16.3</td>
<td>18.3</td>
</tr>
<tr>
<td>TL emission spectra (Å) range maximum</td>
<td>3500-6000</td>
<td>5300-6300</td>
<td>4400-6000</td>
<td>3500-5000</td>
<td>4500-6000</td>
</tr>
<tr>
<td>Temperature of main TL glow peak</td>
<td>195°C</td>
<td>200°C</td>
<td>260°C</td>
<td>260°C</td>
<td>110°C</td>
</tr>
<tr>
<td>Efficiency at Cobalt-60 (relative to LiF)</td>
<td>1.0</td>
<td>0.3</td>
<td>3</td>
<td>23</td>
<td>70</td>
</tr>
<tr>
<td>Energy response without added filter (30 keV/Cobalt-60)</td>
<td>1.25</td>
<td>0.9</td>
<td>13</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Useful range</td>
<td>3 x 10{superscript}5 R</td>
<td>3 x 10{superscript}5 R</td>
<td>3 x 10{superscript}5 R</td>
<td>3 x 10{superscript}4 R</td>
<td>3 x 10{superscript}4 R</td>
</tr>
<tr>
<td>Fading</td>
<td>small, 5/12 wk</td>
<td>10 in first month</td>
<td>10 in first month</td>
<td>no detectable fading</td>
<td>50 - 60 in the first 24 hrs</td>
</tr>
<tr>
<td>Light sensitivity</td>
<td>essentially none</td>
<td>essentially none</td>
<td>essentially none</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Physical form</td>
<td>powder, extruded, Teflon-embedded, silicon-embedded, glass capillaries</td>
<td>powder, Teflon-embedded, hot-pressed chips, glass capillaries</td>
<td>powder, Teflon-embedded</td>
<td>special dosimeters</td>
<td>powder, Teflon-embedded</td>
</tr>
</tbody>
</table>
THERMOLUMINESCENT DOSIMETERS

Thermoluminescent dosimeters are now widely used as personal dosimeters, for measurements of environmental radiation and in radiological physics.

The basic technique has been known for more than three hundred years and was first used to measure ionizing radiation by Weidmann and Schmidt in 1895.

In the past twenty years several phosphors have been developed but easily the most widely used is Lithium fluoride. Table 7 shows the characteristics of several thermoluminescent phosphors and Fig. 22 shows that relative response of several phosphors as a function of photon energy.

Lithium Fluoride Phosphors

It is the rather flat energy response of LiF that has made it so popular for photon dosimetry (the difference in response between 40 keV and 1 MeV is only 30 percent). However, LiF phosphors present

Figure 22. Theoretical sensitivity of several thermoluminescent phosphors.
some difficulties, demanding very careful technique if they are to be used for accurate dosimetry.

The glow curve is complex and far from ideal, as may be seen from Fig. 23 which shows a typical glow curve after the phosphor has been annealed at 1 hr at 400°C, irradiated to 100 R, and then immediately read.

The glow curve is complex showing 5 peaks. These peaks decay at room temperature with approximate half-lives of 5 minutes, 10 hours, 0.5 years, 7 years, and 80 years. Peaks 4 and 5 are the most suitable for dosimetry. Peaks 1 and 2 may be removed by various combinations of pre- and post-irradiation annealing. Post-irradiation annealing for 10 minutes at 100°C is usual.

Annealing procedures can have a significant influence on the sensitivity of LiF phosphors and carefully controlled technique is required for consistency. The light output from LiF phosphors is linear up to an exposure of about 1000 R as may be seen in Fig. 24 and the output is photon dose-rate independent up to dose rates of at least 2×10^{11} rads s$^{-1}$. LiF in its pure form exhibits little thermoluminescence, the phenomenon depending

![Figure 23. Typical glow curve of LiF (TLD-100) after phosphor phosphor has been annealed 1 hour at 400°C read soon after irradiation to 100 R.](image-url)
Figure 24. 7LiF thermoluminescent dosimeter response to 60-Co γ-rays. One representative error bar is indicated.

upon the correct mix of impurity ingredients. There is no general agreement as to what these are but Mg, Eu, Y, Zr, and Ce have been reported in various descriptions of techniques of production. (Harshaw manufactures LiF: Mg, Ti under the trade-names TLD-100, 600 and 700, and the composition of these phosphors is shown in the Table 8.)

The main dosimetry peak is around 200$^\circ$ which is favorable for rapid heating. The emission spectrum from LiF lies in the

<table>
<thead>
<tr>
<th>Isotope</th>
<th>TLD-100</th>
<th>TLD-600</th>
<th>TLD-700</th>
</tr>
</thead>
<tbody>
<tr>
<td>6Li</td>
<td>7.5</td>
<td>95.6</td>
<td>0.01</td>
</tr>
<tr>
<td>7Li</td>
<td>92.5</td>
<td>4.4</td>
<td>99.99</td>
</tr>
</tbody>
</table>
blue region enabling infra-red emission from the heater to be eliminated by the use of a red/infra-red filter.

Neutron Detection

The high thermal neutron capture cross section of Li\(^6\) has led to the use of \(^6\)LiF phosphors for neutron detection both in personal dosimetry and to measure fast neutrons by surrounding them with moderator—as for example, Bonner spheres.\(^{62}\) Since TLD 600 contains 95.6 percent \(^6\)LiF, TLD 700 99.99 percent \(^7\)LiF, a pair of dosimeters can be used to measure thermal neutron exposures by difference.

Cameron et al.\(^{60}\) found that TLD-100 gives the following light output:

\[
10^9 \text{ neutrons cm}^{-2} (\sim 1 \text{ rem}) \approx 37 \text{R } ^{137}\text{Cs } \gamma\text{-rays}.
\]

On the basis of energy absorbed thermal neutrons produce \(-1/7\) the amount of light produced by \(\gamma\)-rays.

Because of the high thermal neutron capture cross section of \(\text{Li}\) some care must be taken in measurements using \(\text{LiF}\) phosphors when neutrons are present. It should be noted that:

(a) Traces of \(^6\)Li in TLD-700 may give errors.

(b) TLD-100 and TLD-600 have large capture cross sections for thermal neutrons. Samples must therefore be thin:

\((-0.1 \text{ mm of TLD-100 absorbs 5–10 percent incident thermal neutrons. } ~0.1 \text{ mm of TLD-600 absorbs 50 percent of incident thermal neutrons.})\)

(c) Fast neutrons may be moderated by the human body to produce thermal neutrons.

(d) The glow curves for photons and thermal neutrons are slightly different.

(e) Supralinearity is less for thermal neutrons than for photons.

Response of LiF Phosphors to Charged Particles

LiF phosphors are sensitive to electrons, protons, \(\alpha\) particles and heavy ions. In general the light output per unit
of energy absorbed decreases with the LET of the incident radiation.

Jahnert60 has reported measurement of the efficiency of the light output of TLD-700 (7LiF) using protons from a few to 20 MeV and alpha-particles emitted by radioactive materials. He found decreasing efficiency with increasing LET.

Jahnert has proposed two alternative theoretical models (which differ in the number of electron traps assumed), both of which fit his experimental data quite well in the range of LET from 0.02 to 300 keV/\textit{m}, when the accuracy of the experimental data is considered. The one-trap theory seems to fit the data better and may be used to interpolate values of ϵ. Jahnert's work has been continued using energetic heavy ions by Thomas and his colleagues.10-12

The Bevalac is capable of producing heavy ions as heavy as Ar$^{18+}$, up to energies as high as 2.1 GeV/amu.61 7LiF dosimeters were exposed to carbon, oxygen, neon and argon ions of energies shown in Table 9. The experimental technique used was to expose the dosimeter simultaneously with nuclear emulsions (Kodak type NTA), AgCl crystal detectors62 or activation detectors to determine the particle fluence, ϕ. The absorbed dose in the irradiated dosimeters may then be calculated from their known stopping power, $(dE/dx)_{\text{LiF}}$, for the incident ions. Finally, the dosimeter response to heavy ions, L, is compared with the dosimeter response to 60Co photons for an exposure of 1 R, r.

<table>
<thead>
<tr>
<th>Ion Speciex</th>
<th>Energy (MeV/amu)</th>
<th>(dE/dx) in 7LiF (MeV g$^{-1}$cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$^+$1</td>
<td>798</td>
<td>1.89</td>
</tr>
<tr>
<td>C$^+$6</td>
<td>252</td>
<td>116</td>
</tr>
<tr>
<td>O$^+$8</td>
<td>300</td>
<td>112</td>
</tr>
<tr>
<td>O$^+$8</td>
<td>1050</td>
<td>186</td>
</tr>
<tr>
<td>Ne$^{10+}$</td>
<td>372</td>
<td>259</td>
</tr>
<tr>
<td>A$^{18+}$</td>
<td>447</td>
<td>770</td>
</tr>
</tbody>
</table>
It may then be readily shown that

\[
\epsilon = \frac{5.05 \times 10^7}{\left(\frac{dE}{dx}\right)_{\text{LiF}}} \cdot \frac{L}{\phi} \tag{4}
\]

when \(L \) and \(\tau \) are light outputs in arbitrary units, and

\[
\left(\frac{dE}{dx}\right)_{\text{LiF}} \quad \text{is measured in MeV g}^{-1} \text{ cm}^{-2},
\]

\(\phi \) is measured in particles cm\(^{-2}\).

Figure 25 summarizes the data of Jahnert63 and Thomas et al.,10-12 together with theoretical predictions.

![Graph showing dosimeter response relative to 60Co \(\gamma \)-rays and comparison with theoretical models.](image)

Figure 25. Measured values of \(^7\)LiF TLD efficiency relative to 60Co \(\gamma \)-rays and comparison with theoretical models.
These studies have enabled ^7LiF phosphors to be used for accurate heavy ion dosimetry (few percent) but more fundamental work remains to be done. The light output as a function of absorbed dose due to heavy ions can be inferred to be linear from a few rads to about 500 rads by the work of Thomas et al.,10-12 but controlled experiments are needed. Dose rate phenomena need to be investigated and details of the glow curves as a function of ion species, absorbed dose and dose rate must be studied. Nevertheless LiF phosphors are extremely valuable tools having a wide range of application in particle dosimetry.

Measurement of the Spatial Variations of Radiation Fields

^7LiF dosimeters are useful in field intensity mapping. Smith et al.8 have reported measurements using 0.125 in. x 0.125 in. x 0.035 in. mass ~25 mg phosphors, manufactured by the Harshaw Chemical Company. Figure 26 shows a dosimeter assembly that may be placed in the radiation field, while Fig. 27 shows the spatial distribution of absorbed dose across a beam of 380 MeV/amu$^{10+}$ Ne ions.
Absorbed Dose Distribution Studies

Thermoluminescent dosimeters are also extremely useful for absorbed dose distribution studies. Patrick et al.13 have reported measurements of the spatial distribution of absorbed dose in a lucite cylinder (used to simulate irradiated mice) irradiated by a wide beam of 251 MeV/amu 6C ions. Figure 29 shows both the dosimeter response and the calculated absorbed dose distribution using energy-loss data of Steward et al.63
Figure 28. Comparison of a carbon ion beam profile measured with X-ray film and TLD.

Secondary particles resulting from primary particle interactions are not taken into account in the calculated curve. Comparison between the calculated curve and dosimeter readings is not precisely possible because the dosimeter efficiency is a function of LET and changes along the length of the phantom and these effects must be taken into account for precision. However, the general agreement between the two sets of data is gratifying.

ACKNOWLEDGEMENT

This work was supported by the U. S. Department of Energy under contract No. W07405-ENG-48.
Figure 29. 7LiF Thermoluminescent Dosimeter response as a function of depth in a lucite phantom irradiated by a broad beam of 251 MeV/amu $^{6+}$C ions. The measurements are compared with calculated values of the energy deposition from ionization energy losses.

REFERENCES

42. H. de Staebler, 1979, Similarity of Shielding Problems at Electron and Proton Accelerators. op cit Ref. 33, p 429.

49. A. R. Smith, 1975, Lawrence Berkeley Laboratory, Private communication.

50. Private Communication.

62. E. Schopper, et al., 1972, Review an AgCl Crystals as Visual Detectors of Nuclear Particles, in Proc. 8th Int. Conf. on Nuclear Photography and Visual Detectors, Bucharest.
63. P. G. Stewart, 1968, Stopping Power and Range for Any Nucleus in the Specific Energy Interval 0.01 to 500 MeV/amu in Any Non-Gaseous Material, Lawrence Berkeley Laboratory Report, UCRL-18127.