Title
Assessment of Bone Health After Treatment with the Consciousness Energy Healing Treated Vitamin D3 in Human Bone Osteosarcoma Cells (MG-63)

Permalink
https://escholarship.org/uc/item/5q11k84s

Journal
European Journal of Clinical and Biomedical Sciences, 4(1)

ISSN
2575-4998 (Print); 2575-5005 (Online)

Authors
Sand, Carola Marina
Trivedi, Mahendra Kumar
Branton, Alice
et al.

Publication Date
2018-04-20

DOI
10.11648/j.ejcbs.20180401.13

Peer reviewed
Assessment of Bone Health After Treatment with the Consciousness Energy Healing Treated Vitamin D3 in Human Bone Osteosarcoma Cells (MG-63)

Carola Marina Sand¹, Mahendra Kumar Trivedi¹, Alice Branton¹, Dahryn Trivedi¹, Gopal Nayak¹, Sambhu Charan Mondal², Snehasis Jana²,*

¹Trivedi Global, Inc., Henderson, USA
²Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, India

Email address:
publisht@trivedisrl.com (S. Jana)

*Corresponding author

Abstract: Osteoporosis is associated with increased mortality and significant economic and health burden now-a-days. The study was aimed to evaluate the potential of Consciousness Energy Healing based vitamin D₃ and DMEM medium on bone health. The test items, were divided into two parts. One part of each sample received the Consciousness Energy Healing Treatment by Carola Marina Sand and those samples were labeled as the Biofield Energy Treated (BT) samples, while the other parts of each sample were denoted as the untreated test items (UT). Various parameters were performed for the assessment of bone health such as ALP, collagen, and bone mineralization in human bone osteosarcoma cells (MG-63). The cell viability (MTT) data showed that the test samples were found as safe in the tested concentrations. The level of ALP was significantly increased by 420.64%, 311.08%, and 532.17% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item, respectively at 1µg/mL compared to the UT-DMEM + UT-Test item group. Further, the ALP level was significantly increased by 213.69%, 135.46%, and 42.76% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 10µg/mL compared to the untreated. Collagen was significantly increased by 228.22%, 185.40%, and 256.69% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item, respectively at 0.1µg/mL compared to the untreated. Further, the collagen level was significantly increased by 88.61% and 130.65% in the BT-DMEM + UT-Test item and BT-DMEM + BT-Test item, respectively at 1µg/mL compared to the untreated. Besides, the percent of bone mineralization was distinctly increased by 118.35%, 266.94%, and 118.25% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50µg/mL compared to the untreated. The percent of bone mineralization was distinctly increased by 88.29%, 288.75%, and 86.25% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item, respectively at 100µg/mL compared to the untreated. Overall, the Biofield Energy Treated vitamin D₃ was tremendously improved the bone health parameters and it could be a powerful alternative nutraceutical supplement to combat vitamin D₃ deficiency and fight against various bone-related disorders including osteoporosis, low bone density, osteogenesis imperfecta, Paget’s disease, rickets, osteomalacia, deformed bones, chondrodystrophia fetalis, autoimmune and inflammatory diseases, stress management and prevention, and anti-aging by improving overall health.

Keywords: The Trivedi Effect®, Biofield Energy Healing Treatment, Osteosarcoma Cells, Bone Mineralization, Vitamin D₃ Deficiency, Osteoporosis
1. Introduction

Vitamin D has multiple effects, which regulate the functions in different organs viz. brain, liver, lungs, heart, kidneys, skeletal, immune and reproductive systems. Moreover, it has significant anti-inflammatory, anti-aging, anti-stress, anti-arthritis, anti-osteoporosis, anti-apoptotic, wound healing, anti-cancer, anti-psychotic and anti-fibrotic actions [1]. Vitamin D receptors are widely distributed in most of the body organs viz. brain, liver, heart, lungs, kidney, pancreas, large and small intestines, muscles, reproductive, nervous system, etc. Vitamin D receptors influence cell-to-cell communication, normal cell growth, cell differentiation, cell cycling and proliferation, hormonal balance, neurotransmission process, skin health, immune and cardiovascular functions. In any living vertebrates, vitamin D plays an important role in maintaining a healthy skeletal structure and is essential for bone health. Naturally, it is synthesized in the presence of sunlight in the skin [2]. Most foods do not contain any vitamin D, additionally nowadays synthesized in the presence of sunlight in the skin [2]. Most of the natural sources contain vitamin D or its metabolites, and commercially available products are either derived from animal sources or genetically modified microorganisms [3].

1.1.1. Biofield Energy Healing

Biofield Energy Healing. Biofield Energy Treatment (The Trivedi Effect®) on the test samples (vitamin D₃ and DMEM medium) for bone health activity with respect to the assessment of different bone health parameters like ALP, collagen content, and bone mineralization using standard assays in MG-63 cells.

2. Materials and Methods

2.1. Chemicals and Reagents

Antibiotic solution (penicillin-streptomycin) was procured from HiMedia, India, while 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium) (MTT), Direct Red 80, and ethylene diamine tetra acetic acid (EDTA) were purchased from Sigma, USA. Fetal bovine serum (FBS) and Dulbecco's Modified Eagle's Medium (DMEM) were purchased from TCI, Japan, while vitamin D₃ (denoted as test item) and L-
ascorbic acid were obtained from Sigma-Aldrich, USA. All the other chemicals used in this experiment were analytical grade procured from India.

2.2. Cell Culture

The human bone osteosarcoma (MG-63) cell line used as test system, was maintained under the DMEM growth medium for routine culture and supplemented with 10% FBS. Growth conditions were maintained as 37°C, 5% CO$_2$ and 95% humidity and subcultured by trypsinisation followed by splitting the cell suspension into fresh flasks and supplementing with fresh cell growth medium. Three days before the start of the experiment (i.e., day -3), the growth medium of near-confluent cells was replaced with fresh phenol-free DMEM, supplemented with 10% charcoal dextran stripped FBS (CD-FBS) and 1% penicillin-streptomycin [38].

2.3. Experimental Design

The experimental groups consisted of cells in baseline control (untreated cells), vehicle control groups (0.05% DMSO with Biofield Energy Treated and untreated DMEM), a positive control group (rutin hydrate) and experimental test groups. Experimental groups included the combination of the Biofield Energy Treated and untreated vitamin D$_3$/DMEM. It consisted of four major treatment groups on specified cells with UT-DMEM + UT-Test item, UT-DMEM + Biofield Energy Treated test item (BT-Test item), BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item.

2.4. Consciousness Energy Healing Treatment Strategies

The test item (vitamin D$_3$) and DMEM were divided into two parts. One part each of the test item and DMEM were treated with the Biofield Energy (also known as The Trivedi Effect®) and coded as the Biofield Energy Treated items, while the second part did not receive any sort of treatment and was defined as the untreated samples. This Biofield Energy Healing Treatment was provided by Carola Marina Sand, who participated in this study and performed the Biofield Energy Treatment remotely for ~5 minutes. Carola Marina Sand was remotely located in the Finland, while the test samples were located in the research laboratory of Dabur Research Foundation, New Delhi, India. The Biofield Energy Treatment was administered for 5 minutes through the healer’s unique Energy Transmission process remotely to the test samples under laboratory conditions. Carola Marina Sand in this study, never visited the laboratory in person, nor had any contact with the test item and medium. Further, the control group was treated with a sham healer for comparative purposes. The sham healer did not have any knowledge about the Biofield Energy Treatment. After that, the Biofield Energy Treated and untreated samples were kept in similar sealed conditions for experimental study.

2.5. Determination of Non-Cytotoxic Concentration

The cell viability assay was performed using MTT assay in the human bone osteosarcoma cell line (MG-63). The cells were counted and plated in 96 well plates at the density corresponding to 5 X 104 cells/well/180 µL of cell growth medium. The above cells were incubated overnight under growth conditions and allowed for cell recovery and exponential growth, then they were subjected to serum stripping or starvation. The cells were treated with the test item, DMEM, and the positive control. The untreated cells were used as baseline control. The cells in the above plate (s) were incubated for a time point ranging from 24 to 72 hours in CO$_2$ incubator at 37°C, 5% CO$_2$ and 95% humidity. Following incubation, the plates were taken out and 20 µL of 5 mg/mL of MTT solution was added to all the wells followed by an additional incubation for 3 hours at 37°C. The supernatant was aspirated and 150 µL of DMSO was added to each well to dissolve formazan crystals. The absorbance of each well was read at 540 nm using a Synergy HT micro plate reader, BioTek, USA. The percentage cytotoxicity at each tested concentration of the test substance was calculated using the following Equation 1:

\[
\text{% Cytotoxicity} = \frac{1-(X/R)}{R} \times 100
\]

Where, X = Absorbance of treated cells; R = Absorbance of untreated cells

The percentage cell viability corresponding to each treatment was then be obtained using the following Equation 2:

\[
\text{% Cell Viability} = 100 - \text{% Cytotoxicity}
\]

The concentrations exhibiting ≥70% Cell viability was considered as non-cytotoxic [39].

2.6. Assessment of Alkaline Phosphatase (ALP) Activity

The cells were counted using an hemocytometer and plated in a 24-well plate at the density corresponding 1 x 104 cells/well in phenol free DMEM supplemented with 10% CD-FBS. After the respective treatments, the cells in the above plate were incubated for 48 hours in CO$_2$ incubator at 37°C, 5% CO$_2$ and 95% humidity. After 48 hours of incubation, the plate was taken out and processed for the measurement of ALP enzyme activity. The cells were washed with 1X PBS and lysed by freeze thaw method (i.e., incubation at -80°C for 20 minutes followed by incubation at 37°C for 10 minutes. To the lysed cells, 50 µL of substrate solution i.e., 5 mM of p-nitrophenyl phosphate (pNPP) in 1M diethanolamine and 0.24 mM magnesium chloride (MgCl$_2$) solution (pH 10.4) was added to all the wells followed by incubation for 1 hour at 37°C. The absorbance of the above solution was read at 405 nm using Synergy HT micro plate reader (Biotek, USA). The absorbance values obtained were normalized with substrate blank (pNPP solution alone) absorbance values. The percentage increase in ALP enzyme activity with respect to the untreated cells (baseline group) was calculated using Equation 3:

\[
\text{% Increase in ALP} = \left(\frac{(X-R)}{R}\right) \times 100
\]
2.7. Assessment of Collagen Synthesis

The MG-63 cells were counted using an hemocytometer and plated in 24-well plate at the density corresponding to 10 x 10^3 cells/well in phenol free DMEM supplemented with 10% CD-FBS. Following the respective treatments, the cells in the above plate were incubated for 48 hours in CO\(_2\) incubator at 37°C, 5% CO\(_2\) and 95% humidity. After 48 hours of incubation, the plate were taken out and the amount of collagen accumulated in MG-63 cells corresponding to each treatment was measured by Direct Sirius red dye binding assay. In brief, the cell layers were washed with PBS and fixed in Bouin’s solution (5% acetic acid, 9% formaldehyde and 0.9% picric acid) for 1 hour at room temperature (RT). After 1 hour of incubation, the above wells were washed with milliQ water and air dried. The cells were then stained with Sirius red dye solution for 1 hour at RT followed by washing in 0.01 N HCl to remove unbound dye. The collagen dye complex obtained in the above step was dissolved in 0.1 N NaOH and absorbance was read at 540 nm using Biotek Synergy HT micro plate reader. The level of collagen was extrapolated using standard curve obtained from purified Calf Collagen Bornstein and Traub Type I (Sigma Type III). The percentage increase in collagen level with respect to the untreated cells (baseline group) was calculated using Equation 4:

\[
\text{% Increase in collagen levels} = \frac{(X-R)}{R} \times 100
\]

Where, \(X\) = Collagen levels in cells corresponding to positive control and test groups
\(R\) = Collagen levels in cells corresponding to baseline group (untreated cells)

2.8. Assessment of Bone Mineralization by Alizarin Red S Staining

The MG-63 cells were counted using an hemocytometer and plated in 24-well plate at the density corresponding to 10 x 10^3 cells/well in phenol free DMEM supplemented with 10% CD-FBS. Following the respective treatments, the cells in the above plate were incubated for 48 hours in CO\(_2\) incubator at 37°C, 5% CO\(_2\) and 95% humidity to allow cell recovery and exponential growth. After overnight incubation, the above cells were subjected to serum stripping for 24 hours. The cells were then treated with non-cytotoxic concentrations of the test samples and positive control. Following 3-7 days of incubation with the test samples and positive control, the plates were taken out, cell layers processed further by staining with Alizarin Red S dye. The cells were fixed in 70% ethanol for 1 hour, after which Alizarin Red solution (40 µm; pH 4.2) was added to the samples for 20 minutes with shaking. The cells were washed with distilled water to remove unbound dye. For quantitative analysis by absorbance evaluation, nodules were solubilized with 10% cetylpyridinium chloride for 15 minutes with shaking. Absorbance was measured at 562 nm using Biotek Synergy HT micro plate reader. The percentage increase in bone mineralization with respect to the untreated cells (baseline group) was calculated using the following Equation 5:

\[
\text{% Increase} = \frac{(X-R)}{R} \times 100
\]

Where, \(X\) = Absorbance in cells corresponding to positive control or test groups; \(R\) = Absorbance in cells corresponding to baseline (untreated) group.

2.9. Statistical Analysis

All the values were represented as percentage of the respective parameters. For statistical analysis Sigma-Plot (version 11.0) was used as a statistical tool. Statistically significant values were set at the level of \(p \leq 0.05\).

3. Results and Discussion

3.1. MTT Assay

![Figure 1](https://example.com/figure1.png)
Figure 1. The effect of the cell viability on the test samples (vitamin D\(_3\) and DMEM medium) in MG-63 cells after 72 hours of treatment. VC: Vehicle control (0.05% DMSO); UT: Untreated; BT: Biofield Energy Treated.
The results of cell viability data of the Biofield Energy Treated vitamin D$_3$ and DMEM by MTT assay in MG-63 cells are shown in Figure 1. The data showed that the test samples in combination did not exhibit any cytotoxicity (as evidence of cell viability approximately greater than 71%) across all the tested concentrations up to 100µg/mL. Hence, the same concentrations were used for the evaluation of alkaline phosphatase (ALP) activity, collagen synthesis, and bone mineralization in MG-63 cells.

3.2. Alkaline Phosphatase (ALP) Activity

The effect of the test items on alkaline phosphatase (ALP) activity in MG-63 cells is shown in Figure 2. The vehicle control group showed 13.2% level of ALP activity as compared to the untreated cells group. The ALP activity was significantly increased in a dose-dependent manner by 33.9%, 45.69%, and 79.66% in the positive control (rutin) group at the concentration of 0.01, 0.1, and 1µg/mL, respectively compared to the untreated cells group. The level of ALP was significantly increased by 420.64%, 311.08%, and 532.17% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item group, at the concentration of 1µg/mL compared to the UT-DMEM + UT-Test item group. Further, the level of ALP was significantly increased by 213.69%, 135.46%, and 42.76% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50µg/mL compared to the UT-DMEM + UT-Test item group. Moreover, the level of ALP was remarkably increased by 33.55% in the BT-DMEM + UT-Test item group than the UT-DMEM + UT-Test item group (Figure 2). Defective bone mineralization process due to vitamin D and its active metabolites deficiency leads to metabolic bone disorders like osteomalacia or rickets. For screening of osteomalacia or rickets, raised value of serum ALP activity play a cost-effective sensitive marker [40, 41]. According to van Straalen et al. reported that the bone specific ALP used as an indicator and a useful parameter for monitoring changes in bone formation of bone formation [42]. Overall, the Consciousness Energy Healing Treated (The Trivedi Effect®) test item group (i.e., vitamin D$_3$) showed an improved synthesis of ALP level in the human osteosarcoma cells with respect to the untreated item items group. In this experiment, it was also evident that the Biofield Energy Treated vitamin D$_3$ significantly increased the level of ALP expression, which might be very advantageous to maintain a healthy skeletal structure for the patients suffering from various bone related disorders.

3.3. Assessment of Collagen Activity

The effect of the test items on the collagen activity in MG-63 cells is shown in Figure 3. Vehicle control group showed 16.1% increased level of collagen as compared to the untreated cells group. The level of collagen synthesis was significantly increased by 25.81% and 51.61% at 0.01 and 0.1µg/mL, respectively in the positive control group compared to the untreated cells group. The collagen synthesis was significantly increased by 228.22%, 185.40%, and 256.69% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 0.1µg/mL compared to the UT-DMEM + UT-Test item group. Moreover, the collagen level was significantly increased by 88.61% and 130.65% in the UT-DMEM + UT-Test item and BT-DMEM + BT-Test item groups, respectively at 10µg/mL compared to the UT-DMEM + UT-Test item group. Further, the ALP level was significantly elevated by 79.61%, 31.15%, and 32.15% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50µg/mL compared to the UT-DMEM + UT-Test item group. Moreover, the level of ALP was remarkably increased by 33.55% in the BT-DMEM + UT-Test item group than the UT-DMEM + UT-Test item group (Figure 2). Defective bone mineralization process due to vitamin D and its active metabolites deficiency leads to metabolic bone disorders like osteomalacia or rickets. For screening of osteomalacia or rickets, raised value of serum ALP activity play a cost-effective sensitive marker [40, 41]. According to van Straalen et al. reported that the bone specific ALP used as an indicator and a useful parameter for monitoring changes in bone formation of bone formation [42]. Overall, the Consciousness Energy Healing Treated (The Trivedi Effect®) test item group (i.e., vitamin D$_3$) showed an improved synthesis of ALP level in the human osteosarcoma cells with respect to the untreated item items group. In this experiment, it was also evident that the Biofield Energy Treated vitamin D$_3$ significantly increased the level of ALP expression, which might be very advantageous to maintain a healthy skeletal structure for the patients suffering from various bone related disorders.

![Figure 2](image-url). The alkaline phosphatase enzyme activity was assessed in human bone osteosarcoma cell after treatment with the Biofield Energy Treated test samples (vitamin D3 and DMEM medium). VC: Vehicle control (0.05% DMSO), UT: Untreated; BT: Biofield Energy Treated.

3.3. Assessment of Collagen Activity

The effect of the test items on the collagen activity in MG-63 cells is shown in Figure 3. Vehicle control group showed 16.1% increased level of collagen as compared to the untreated cells group. The level of collagen synthesis was significantly increased by 25.81% and 51.61% at 0.01 and 0.1µg/mL, respectively in the positive control group compared to the untreated cells group. The collagen synthesis was significantly increased by 228.22%, 185.40%, and 256.69% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 0.1µg/mL compared to the UT-DMEM + UT-Test item group. Moreover, the collagen level was significantly increased by 88.61% and 130.65% in the UT-DMEM + UT-Test item and BT-DMEM + BT-Test item groups, respectively at 10µg/mL compared to the UT-DMEM + UT-Test item group. Further, the ALP level was significantly elevated by 79.61%, 31.15%, and 32.15% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50µg/mL compared to the UT-DMEM + UT-Test item group. Moreover, the level of ALP was remarkably increased by 33.55% in the BT-DMEM + UT-Test item group than the UT-DMEM + UT-Test item group (Figure 2). Defective bone mineralization process due to vitamin D and its active metabolites deficiency leads to metabolic bone disorders like osteomalacia or rickets. For screening of osteomalacia or rickets, raised value of serum ALP activity play a cost-effective sensitive marker [40, 41]. According to van Straalen et al. reported that the bone specific ALP used as an indicator and a useful parameter for monitoring changes in bone formation of bone formation [42]. Overall, the Consciousness Energy Healing Treated (The Trivedi Effect®) test item group (i.e., vitamin D$_3$) showed an improved synthesis of ALP level in the human osteosarcoma cells with respect to the untreated item items group. In this experiment, it was also evident that the Biofield Energy Treated vitamin D$_3$ significantly increased the level of ALP expression, which might be very advantageous to maintain a healthy skeletal structure for the patients suffering from various bone related disorders.
disorder called osteogenesis imperfecta, while the failure of mineral deposition can be the result of rickets and osteomalacia, conditions that result in marked weakening of the skeleton [43, 44]. The extracellular matrix especially connective tissue with its collagen, plays an important role in the force transmission and bone structure maintenance. The turnover of the bone matrix is influenced by collagen synthesis and degrading metalloprotease enzymes increase with the mechanical loading [45]. Overall, the Consciousness Energy Healing based test item group (i.e., vitamin D3) showed an improved synthesis of collagen content in the human osteosarcoma cells with respect to all the treatment groups. Thus, it is assumed that The Trivedi effect® has the significant potential to improve the bone health in various skeletal disorders.

3.4. Assessment of Bone Mineralization by Alizarin Red S (ARS) Staining

The bone mineralization in human bone osteosarcoma cells is shown in Figure 4. The percentage of bone mineralization was significantly increased in a concentration-dependent manner by 60.89%, 83.68%, and 137.12% at 5, 10, and 25µg/mL, respectively in the positive control group compared to the untreated cells group. The percent of bone mineralization was distinctly increased by 84.41%, 201.94%, and 81.90% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item group at 10µg/mL compared to the UT-DMEM + UT-Test item group. Further, a noticeably increased percentage of bone mineralization by 118.35%, 266.94%, and 118.25% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively was found at 50µg/mL with respect to the UT-DMEM + UT-Test item group. In addition, the data showed a significant increase of bone mineralization by 88.29%, 288.75%, and 86.25% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively than the UT-DMEM + UT-Test item group (Figure 4) at 100µg/mL. Thus, based on the above findings it is hypothesized that the Consciousness Energy Healing Treatment (The Trivedi Effect®) based test item groups (i.e., vitamin D3) showed a remarkable improvement of bone mineralization content assessed by in vitro in the human osteosarcoma cells (MG-63) with respect to the all others treatment groups.

4. Conclusions

The MTT cell viability assay data showed more than 71% cells were viable, which indicated that the test samples were safe and nontoxic in all the tested concentrations. ALP was significantly increased by 420.64%, 311.08%, and 532.17% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at
1 µg/mL compared to the UT-DMEM + UT-Test item group. Moreover, the ALP level was significantly elevated by 213.69%, 135.46%, and 42.76% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 10 µg/mL compared to the UT-DMEM + UT-Test item group. Collagen was significantly increased by 228.22%, 185.40%, and 256.69% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item group at 0.1 µg/mL, respectively compared to the untreated group. Further, the collagen level was significantly increased by 88.61% and 130.65% in the BT-DMEM + UT-Test item and BT-DMEM + BT-Test item, respectively at 1 µg/mL compared to the untreated group. Further, the percent of bone mineralization was distinctly increased by 118.35%, 266.94%, and 118.25% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50 µg/mL compared to the untreated group. Altogether, the Biofield Energy Treated test samples (The Trivedi Effect®) demonstrated a significant impact on bone health parameters. Therefore, the Consciousness Energy Healing based vitamin D₃ might be suitable for the development of an alternative and more effective supplement for vitamin D₃ deficiency, which could be useful for the management of various bone related disorders viz. low bone density and osteoporosis, osteogenesis imperfecta, Paget’s disease of bone, rickets, osteomalacia, bone and joint pain, bone fractures, deformed bones, osteoma, chondrodystrophy fetalis, etc. Besides, it can also be utilized in organ transplants (for example kidney transplants, liver transplants and heart transplants), various autoimmune disorders such as Lupus, Addison Disease, Celiac Disease (gluten-sensitive enteropathy), Dermatomyositis, Graves’ Disease, Hashimoto Thyroiditis, Multiple Sclerosis, Myasthenia Gravis, Pernicious Anemia, Aplastic Anemia, Reactive Arthritis, Rheumatoid Arthritis, Sjogren Syndrome, Systemic Lupus Erythematosus, Type 1 Diabetes, Alopecia Areata, Crohn’s Disease, Fibromyalgia, Vitiligo, Psoriasis, Scleroderma, Chronic Fatigue Syndrome and Vascularitis, as well as inflammatory disorders such as Asthma, Ulcerative Colitis, Alzheimer’s Disease, Atherosclerosis, Dermatitis, Diverticulitis, Hepatitis, Irritable Bowel Syndrome, inflammatory diseases, anti-inflammatory, anti-stress, anti-arthritis, anti-osteoporosis, anti-apoptotic, wound healing, anti-cancer, anti-psychoxic and anti-fibrotic actions stress management and prevention, and anti-aging by improving overall health, Parkinson’s Disease and stress etc. to modulate the immune system by improving overall health.

Acknowledgements

Authors are grateful to Dabur Research Foundation, Trivedi Global, Inc., Trivedi Science, Trivedi Testimonials and Trivedi Master Wellness for their support throughout the work.

References

Abbreviations

