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Functional magnetic resonance imaging (fMRI) in the resting state, particularly fMRI based on the blood-
oxygenation level-dependent (BOLD) signal, has been extensively used to measure functional connectivity in
the brain. However, the mechanisms of vascular regulation that underlie the BOLD fluctuations during rest are
still poorly understood. In this work, using dual-echo pseudo-continuous arterial spin labeling andMR angiogra-
phy (MRA), we assess the spatio-temporal contribution of cerebral blood flow (CBF) to the resting-state BOLD
signals and explore how the coupling of these signals is associated with regional vasculature. Using a general
linearmodel analysis, we found that statistically significant coupling between resting-state BOLD and CBF fluctu-
ations is highly variable across the brain, but the coupling is strongest within the major nodes of established
resting-state networks, including the default-mode, visual, and task-positive networks. Moreover, by exploiting
MRA-derived large vessel (macrovascular) volume fraction, we found that the degree of BOLD–CBF coupling
significantly decreased as the ratio of large vessels to tissue volume increased. These findings suggest that the
portion of resting-state BOLD fluctuations at the sites of medium-to-small vessels (more proximal to local neu-
ronal activity) is more closely regulated by dynamic regulations in CBF, and that this CBF regulation decreases
closer to large veins, which are more distal to neuronal activity.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Functional magnetic resonance imaging (fMRI) is a widely used
neuroimaging technique for monitoring brain function. The fMRImeth-
od noninvasively measures the blood-oxygenation level-dependent
(BOLD) effect as an indicator for underlying neuronal activity, reflecting
changes in the concentration of paramagnetic deoxy-hemoglobin
resulting from neurovascular coupling (Ogawa et al., 1990). More
specifically, changes in neuronal activity lead to changes in cerebral
metabolic rate of oxygen (CMRO2), with corresponding alterations in
cerebral blood flow (CBF) (Fox and Raichle, 1986). fMRI studies of the
brain have traditionally focused on task-related BOLD signal changes.
However, by assessing the coherence in the spontaneous slow fluctua-
tion of the resting-state BOLD signal, numerous studies have found
particular brain regions to be inter-connected while at rest (Biswal
et al., 1995; Fox et al., 2005, 2006; Hunter et al., 2006; Nir et al.,
2006). Since the first discovery of synchronous low-frequency
(b0.1 Hz) spontaneous oscillations of BOLD response in the motor
, Baycrest Centre for Geriatric
ada.
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cortex (Biswal et al., 1995), similar types of correlated BOLD signal fluc-
tuations in separate brain regions have been observed, including those
within the default-mode network (DMN) (Fox et al., 2005), as well as
visual (Nir et al., 2006), auditory (Hunter et al., 2006), and attention
system networks (Fox et al., 2006). Correspondingly, the brain in the
resting state is known to account for 20% of the body's oxygen con-
sumption (Shulman et al., 2004) and concurrently requires the blood
supply for supporting the intrinsic neuronal signaling (Raichle et al.,
2001).

Given the consistency of resting-state networks identified by spon-
taneous BOLD fluctuations, some important questions include whether
these resting-state BOLD fluctuations are purely hemodynamic and to
what extent they reflect neuronal activity. Although it is well known
that task-evoked BOLD responses reflect changes in CBF, CMRO2 and
venous blood volume (Davis et al., 1998), the neurovascular origins of
resting-state BOLD connectivity are still poorly understood. While
several studies have assessed functional connectivity based on resting-
state fluctuations in CBF using the arterial-spin labeling (ASL) technique
(Biswal et al., 1997; Chuang et al., 2008; Fukunaga et al., 2008; Liang
et al., 2013; Viviani et al., 2011; Zou et al., 2009), there has been a limit-
ed amount ofwork focusing on the dynamic relationship between BOLD
and CBF fluctuations underlying resting-state networks on either a
global or local basis. Fukunaga et al. (2008) were among the first to
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demonstrate a significant correlation between resting-state BOLD and
CBF measurements, but this study was restricted to the primary visual
cortex, and the correlation patterns were not spatially specific. In a
more recent study by Viviani et al. (2011), group-level CBF–BOLD
correlations were estimated as the correlations between BOLD and
CBF connectivity maps, obtained independently by seed-based analy-
ses. However, these results did not directly address correlations
between temporal dynamics of CBF and BOLD signals, therefore did
not elucidate the interpretation of dynamic CBF contribution to the
low-frequency resting-state BOLD fluctuations used in computing func-
tional connectivity.

In this work,we aim to (i) quantify the spatio-temporal contribution
of cerebrovascular fluctuations to the resting-state BOLD signal on a
voxel-wise basis, and (ii) to understand the contribution of static
macrovascular content to this resting-state CBF–BOLD relationship.
Our hypothesis is that within a resting-state network, dynamic charac-
teristics of spontaneous BOLD oscillations significantly correspond to
fluctuations in CBF. This work is novel in several aspects. First, to simul-
taneously measure CBF and BOLD responses, we used a dual-echo
pseudo-continuous arterial spin labeling (pCASL) technique, which
also offers higher signal-to-noise ratio (SNR) than conventional pulsed
ASL (Dai et al., 2008). Second, to quantitatively assess the dynamic con-
tribution of CBF to the BOLD response, we approximated the BOLD–CBF
relationship using a general linear model (GLM), encouraged by prior
literature. Within this framework, global vascular fluctuations were
included as a covariate to enhance the sensitivity for detecting local
vascular contributions to BOLD signal fluctuations that are independent
of global vascular pulsatility. Third, in light of thepotential association of
large draining veins with the BOLD signal, we used MR angiography
to assess the influence of resting blood volume fraction in the
macrovasculature on the resting-state CBF–BOLD relationship.

Materials and methods

Participants and experimental protocol

This study involved 9 healthy participants (3 men, 6 women), aged
from18 to 32years (mean=26.7, SD=4.3). Participantswere recruited
through the Baycrest Participants Database, consisting of individuals
from the Baycrest and local communities. During the resting-state
scan, all participants were instructed to keep their eyes closed and re-
main awake. The total scan time for the resting-state runs was 350 s.
The study was approved by the research ethics board (REB) of Baycrest,
and the experiments were performed with the understanding and
written consent of each participant, according to REB guidelines.

MRI acquisition

All images were acquired using a Siemens TIM Trio 3 T System
(Siemens, Erlangen, Germany). The scans employed 32-channel phased-
array head coil reception and body-coil transmission. A 3D T1-weighted
anatomical scan was acquired using MPRAGE, with resolution 1 × 1 ×
1 mm, repetition time (TR) = 2400 ms, inversion time (TI) =1000 ms,
echo time (TE) = 2.43 ms, flip angle = 8°, field of view =
256×256mm (sagittal), matrix size=256×256, 192 slices (ascending
order), bandwidth=180Hz/pixel, and GRAPPA acceleration factor=2.

Resting-state CBF and BOLDdatawere simultaneously acquiredwith
a dual-echo pCASL sequence (Dai et al., 2008). Detailed scanning proto-
cols are as follows: TR = 3500 ms, TECBF/TEBOLD = 10/25 ms, field of
view=220×220mm, matrix size=64×64, 18 slices (ascending inter-
leaved order), voxel size = 3.4 × 3.4 × 5.0 mm3, the number of time
frames = 100, bandwidth = 2520 Hz/pixel, and GRAPPA acceleration
factor = 2. The labeling duration was 1500 ms, and the post-labeling
delay was 1000 ms (Alsop and Detre, 1996; Wu et al., 2007) with a
mean Gz of 1mT/m was selected to achieve transit time insensitivity.
To image the blood vessels in the brain, a 3Dmulti-slab whole-brain
time-of-flight (TOF) MR angiography (MRA) images was used with
TR = 20 ms, TE = 3.59 ms, field of view = 200 × 181 mm, matrix
size = 768 × 696 × 200, spanning six slabs with a distance factor of
20%, TONE ramp=70%, voxel size=0.26×0.26×0.5mm3, bandwidth=
165Hz/pixel, and GRAPPA acceleration factor=2. No superior satura-
tion band was used in order to image venous contributions as well as
arterial.

Physiological recording

Global cardiac pulsation was measured as the pulse oximetry wave-
form using the Siemens built-in pulse oximeter fixed onto the left index
finger. The sampling rate was 50 Hz. Participants were instructed to
keep the left hand still during the scans to minimize the movement
artifact. The recording was synchronized with the beginning of the ac-
quisition of the first fMRI volume via a scanner-generated trigger signal.

Data analysis

A schematic describing the proposed analysis method is shown in
Fig. 1.

Image preprocessing
The tag, control, and BOLD images in the dual-echo pCASL data were

separately preprocessed using SPM8 (WellcomeTrust Centre for Neuro-
imaging, London, UK, Friston et al., 2011). The first four time frames
were discarded to ensure the MR steady state. The effects of head
motion were reduced by spatially realigning all time frames to the
first time frame using a least squares approach and a six parameter spa-
tial transformation. A set of realignment parameters was saved for
modeling the residual head motion effects on BOLD time frames in the
proposed GLM framework. To compensate for slice-acquisition delays,
the signal in each slice was realigned temporally to a reference slice
(e.g., the middle slice) using sinc interpolation. All time frames were
spatially normalized into the Montreal Neurological Institute (MNI)
space, and resampled to 2-mm isotropic voxels. Spatial smoothing
with a 6-mm full-width at half-maximum (FWHM) Gaussian kernel
was applied.

As the contributions of physiological noise to the interleaved tag and
control images are different (Restom et al., 2006), the tag and control
images were subjected to physiological noise correction separately.
Assuming that the physiological noise contribution arising from cardiac
pulsation and respiration is globally distributed, and neuronal activity-
related signals are low in the white matter and cerebrospinal fluid (CSF),
the white matter and CSF were used as a noise regions-of-interest
(ROIs) and the signals from these ROIswere used as sources that primarily
reflect physiological noise. After segmenting the T1-weighted anatomical
image into the different tissue classes, including gray matter, white
matter and CSF, we derived four significant principal components
from the mean signal in the noise ROI, transferred into the EPI volumes
using singular-value decomposition. Physiological noise within the tag
and control images was then removed by projecting onto the orthogo-
nal complement of the range space of the noise regressors (Behzadi
et al., 2007).

Dynamic CBF change estimation from pCASL data
One of the challenges of CBF estimation in ASL techniques is poten-

tial contamination of CBF by BOLD effects, because the CBF-weighted
images contain T2⁎weighting as well. In this work, to reduce BOLD con-
tamination, themodulated CBF component, which is less affected by the
BOLD-weighted tissue component, was extracted by high-pass filtering
the ASL signal, followed by demodulation. This technique was intro-
duced by Chuang et al. (2008), and was applied successfully in subse-
quent studies (Nasrallah et al. 2012; Wu et al., 2009; Zou et al., 2009).
This approach is a more generalized version of direct subtraction of
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time-matched upsampled followed by sinc-interpolation of tag and
control signals (Aguirre et al., 2002; Liu and Wong, 2005) — sinc sub-
traction is equivalent to filtering the demodulated ASL data with an
ideal low-pass filter.

Specifically, the ASL time series with interleaved tag and control im-
ages, S[n], can be approximately described as the sumof an unmodulated
component SN[n] and a modulated component SF[n] where the rapid
modulation reflects the alternating tag and control images (Chuang
et al., 2008; Liu and Wong, 2005),

S n½ �≈SN n½ � þ SF n½ �; ð1Þ

where

SN n½ � ¼ M0B0 β− kF0
2

þ βΔB n½ �− kF0
2

ΔF n½ �
� �

; ð2Þ

SF n½ � ¼ cos πn½ � �M0B0
kF0
2

1þ ΔF n½ �ð Þ; ð3Þ

where F[n] denotes CBF, B[n] denotes the BOLD contamination, n is the
frame number (odd: tag, even: control); the subscript ‘0’ denotes base-
line; M0 is the equilibrium magnetization; β is the signal decay during
TR; and k is a constant, k ¼ 2αe−δ R1a−R1ð Þe−R1w 1−e−R1τ

� �
=λR1, where

α is the labeling efficiency, δ is the arterial blood transit time, R1 and
R1a represent the longitudinal relaxation rate of tissue and blood, respec-
tively,w is the post labeling delay, τ is the labeling duration, and λ is the
brain/blood partition coefficient. Note that i) the BOLD contamination
term, ΔB[n], is included only in the unmodulated component SN[n]
because the BOLD component is equally present in the tag and control
images, and ii) given that the resting-state BOLD and CBF signals are
dominated by low-frequency content, the cosine-modulated CBF com-
ponent SF[n] remains only within the frequency spectrum of S[n] over
half of the Nyquist frequency (i.e., 1/4TR). Therefore, to estimate the
dynamic CBF changes with removal of BOLD contamination, the
unmodulated component SN[n] should be attenuatedwhile themodulat-
ed component SF[n] will be preserved. By high-pass filtering (with a
cutoff frequency of 0.071Hz) the ASL signal S[n] in Eq. (1), thus isolating
it from the low-frequency BOLD contribution, we can extract the modu-
lated component SF[n]. Then, by demodulating SF[n] to a low frequency
range through multiplication by cos[πn], the changes in CBF with
reduced BOLD contamination are given by

ΔF n½ � ¼ c � SF′ n½ �−1; ð4Þ

where model parameter c ¼ 2= kM0B0 F0ð Þ; SF
′ n½ � denotes the de-

modulated SF[n], and the frequency of ΔF[n] is within the range of
0–0.071 Hz. We illustrate this procedure in Fig. 2. Note that within
ultra-low frequencies (0.009–0.05 Hz), the potential overlap between
the CBF signal and BOLD contamination is minimized (Fig. 2c).

Dynamic cerebrovascular contributions: general linear model analysis
To assess the local vascular effects (in terms of CBF) on the resting-

state BOLD fluctuations, we performed GLM analysis of the BOLD data
using a voxel-wise CBF regressor. Ourmodel is based on the assumption
of approximate linearity between BOLD and CBF signals during resting
state (Fukunaga et al., 2008). Let y(rj) and xF(rj) denote the vectors of
BOLD and CBF time series at the j-th voxel, respectively:

y r j
� �

¼ ΔB r j; t1
� �

;ΔB r j; t2
� �

;…;ΔB r j; tK
� �h iT ∈RK

;

x F r j
� �

¼ ΔF r j; t1
� �

;ΔF r j; t2
� �

;…;ΔF r j; tK
� �h iT ∈RK

;
ð5Þ

where rj is the j-th voxel position, j=1,…, J, tk is the k-th time frame,
k=1,…, K, ΔB(rj, tk) denotes the changes in BOLD signal, and ΔF(rj, tk)
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denotes the changes in CBF signal. In our study, BOLD signal fluctua-
tions, ΔB(r, t), were estimated by surround addition of the tag and con-
trol signals acquired at the second TE such that at every time point the
sum of each signal and the average of its two nearest neighbors is
formed (Liu and Wong, 2005; Liu et al., 2013), and the changes in CBF
signal,ΔF(r, t), were estimated from the tag and control signals acquired
at the first TE using Eq. (4).

Let y(rj), the resting-state BOLD signal at the j-th voxel, be modeled
by the following GLM:

y r j
� �

¼ X r j
� �

β r j
� �

þ ε r j
� �

; ð6Þ

where

X r j
� �

¼ x F r j
� �

;xP ; xM1;…; xM6;1
h i

: ð7Þ

Here, X(rj) denotes the K×9 design matrix which contains a covar-
iate of interest (i.e., the CBF signal at voxel j, xF(rj)) and nuisance vari-
ables (i.e., the pulse oximetry signal xP, six vectors of spatial
transformation associated with residual head motion effects xM1,…,
xM6 (Friston et al., 1996; Hutton et al., 2011), and a vector of ones, 1),
β(rj) is a 9×1 vector containing unknownmodel parameters to be esti-
mated, and ε(rj) is a K×1 vector of residuals independent and normally
distributed with zero mean and a variance of σ2(rj). The pulse oximetry
signal was down-sampled to match the imaging TR. The pulse oximetry
signal was found to reflect systemic physiological confounds originating
from both cardiac and respiration components of the BOLD signal
(Verstynen and Deshpande, 2011). The inclusion of these signals in
the GLM enhances the sensitivity for detecting the local contribution
of CBF to BOLD. In a comparison to a similar method (Behzadi et al.,
2007) which typically uses six regressors estimated from noise ROIs
(e.g., white matter and CSF), a downsampled pulse oximetry regressor
can provide a more direct assessment of changes in global vascular
fluctuation (Mannheimer, 2007) and may reduce the risk of over-
parameterization of the GLM estimation (McCullagh and Nelder,
1989; Verstynen and Deshpande, 2011). Therefore, in order to investi-
gate the separate effects of local and global cerebrovascular fluctuation
on resting-state BOLDmore reliably, we used the pulse oximetry regres-
sor in our linear model of the BOLD response while the noise regressor
taken from the white matter and CSF was used for removing the
physiological noise fromCBF response. Here, all regressorswere orthog-
onalized with respect to each other, and regressor intensities were
normalized, setting the sum of squares to unity with zero-mean. In ad-
dition, potential time shifts between BOLD and the vascular regressors,
including CBF and pulse oximetry, were estimated for each voxel, based
on cross-correlation (Chang et al., 2008; Frederick et al., 2012;
Fukunaga et al., 2008; Tong and Frederick, 2010, 2012). We selected
the shift value that maximizes the statistical significance (in terms
of t-statistic) within the physiological range. The ranges of −3.5 s
to +3.5 s (Fukunaga et al., 2008) and −7.0 s to +7.0 s (Tong and
Frederick, 2010) were considered as valid time shift ranges for CBF
and pulse oximetry regressors, respectively. Both vascular regressors
were then shifted in time to match the BOLD time course prior to the
estimation of GLM parameters.

The magnitude of individual level regression coefficients at the j-th
voxel position (β̂ r j

� �
in Eq. (6)) and its variancewere estimatedwith or-

dinary least squares (OLS) (Friston et al., 1994). Here, theOLS coefficient
estimate is proportional to the covariance between BOLD and CBF,
which is a measure of how much the two time series change together.
The statistical significance was then quantified using t-statistics. In
order to calculate the significance of CBF–BOLD associations across indi-
viduals, we performed group analysis based on a mixed-effect model
(Mumford and Nichols, 2009; Penny and Holmes, 2006). Specifically,
combining the individual-level OLS estimates, the group-level t-statistic
was calculated using the OLS approach (assuming homogeneity of
individual-level variance).

Static cerebrovascular contributions
To assess the contribution of baseline CBF to the resting-state BOLD–

CBF relationship, average CBF values were calculated using the ASL Data
Processing Toolbox (ASLtbx) (Wang et al., 2008). The association be-
tween these baseline CBF maps and the BOLD–CBF was assessed using
a voxel-wise GLM. Moreover, we obtained angiographic measurements
of macrovascular volume, as described below.

The gradient-echo BOLD signal is widely attributed to an intravascu-
lar and an extravascular component, both ofwhich can arise from either
themicro- ormacrovasculature. The latter, particularly pial vessels,may
have a substantial but undesirable weighting on the BOLD signal
(Boxerman et al., 1995). While this is widely known, current BOLD
acquisitions do not distinguish between macro- and microvascular
contributions. Thus, to characterize the effects of vascular content on
the resting-state dynamic BOLD–CBF relationship (quantified through
t-statistic), we derived resting-state macrovascular fraction, V0.

Because in TOF MRA data signal intensities within the blood vessels
are higher than those of surrounding tissues, vessel structures were
segmented using a threshold-based approach. More specifically, to im-
prove our ability to accurately extract vasculature from the MRA
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Fig. 3. 3D visualization of the vessel segmentation obtained from the MR angiography scan. (a) Anterior–dorsal view of the vascular tree; (b) sagittal view of the medial and intracranial
vessels; and (c) sagittal view of the pial vessels located at the surface of cortex, outlined in red. Volume rendering of the blood vessels was performed using MRIcron (http://www.
mccauslandcenter.sc.edu/mricro/mricron/). Abbreviations: A: anterior, P: posterior, L: left, R: right, Sup: superior.
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image volume, we removed non-brain tissue such as scalp, skull, and
dura (known as “skull-stripping”) using brain-extraction tool (BET2)
of FSL software (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, Jenkinson et al.,
2005), and corrected intensity non-uniformity in MRA using nonpara-
metric nonuniform intensity normalization (N3) (Sled et al., 1998).
We then extracted the vessel structure from the remaining MRA
image volume using thresholding. An example of the resulting vascular
map is shown in Fig. 3, demonstrating that the MRA data was able to
capture both pial vessels and intracranial vessels.

Then, we performed a linear regression analysis. Resting blood vol-
ume fraction V0 is typically defined as the ratio of blood vessels to tissue
volume in the fMRI measurements (Buxton et al., 1998), and V0 can be
calculated as the combination of small-vessel fraction VS and
macrovascular fractions VM (Hu et al., 2012a, b):

V0 r j
� �

¼ VM r j
� �

þ VS 1−VM r j
� �� �

; ð9Þ

where rj is the j-th voxel position in the fMRI image volume, j=1,…, J,
the small-vessel fraction VS is assumed as 0.02 (Friston et al., 2000; Hu
et al., 2012a, b), and macrovascular (large-vessel) fraction at the j-th
voxel, VM(rj), can be assessed by using the vasculature segmentations
based on the MRA image volumes:

VM r j
� �

¼ NV r j
� �

=NA; ð10Þ

where NV(rj) is the number of voxels occupied by the segmented vascu-
lature at the j-th fMRI voxel andNA is the number of MRA voxels at each
voxel of fMRI volume. Note that as the MRA images were spatially nor-
malized into the MNI space, and resampled to a 0.5-mm isotropic grid,
the resulting voxel size of the MRA data (0.5 × 0.5 × 0.5mm3) is much
smaller than the voxel size of our fMRI dataset (2×2×2mm3 after re-
sampling). Therefore, in our dataset, NA was 64 for all voxels, NV(rj)
was within a range of 0 to1, and the corresponding value of VM(rj)
was determined within a range of [0, 1/64, …,63/64, 64/64], which
leads to 64 bins of V0(rj). Using resting blood volume fraction V0 and
group-average of corresponding t-statistics (that fall into each bin of
V0), we performed linear regression analysis to investigate the static
blood volume effects on the degree of coupling between CBF and
BOLD fluctuations during resting-state.

Results

The average BOLD and CBF time-series in the posterior cingulate cor-
tex (PCC) and the right dorsolateral prefrontal cortex (DLPFC) are
shown in Fig. 4. PCC, a prominent and robustly observed node of the
DMN, was selected as an 8mm-radius sphere centered at coordinates
x=−6, y=−58, z=28 in MNI305 space (Toro et al., 2008). We also
selected part of Brodmann area 46 as the right DLPFC (DLPFC-R), a
main node of the so-called “task-positive network” — a set of regions
that are positively correlatedwith cognitive and attention tasks but con-
sistently and negatively correlated with the DMN (Fox et al., 2005). The
task-positive network typically consist of the DLPFC, intraparietal sulcus
(IPS), inferior precentral sulcus (IPCS), dorsal anterior cingulate cortex
(dACC), middle temporal region (MT), premotor cortex, and supple-
mentary motor area (Chang and Glover, 2009; Fox et al., 2005, 2009).
In order to better visualize the comparison between the BOLD and CBF
time courses, we normalized both signals to unity maximum in Fig. 4,
which shows that the spontaneous BOLD fluctuations in PCC are consis-
tent with the CBF fluctuation changes, in agreement with our hypothe-
sis. Of note, in addition to the DMN, the positively correlated patterns
between CBF and BOLD fluctuations during resting-state were also ob-
served in the right DLPFC, part of the task-positive network. As a further
validation of our findings, we also noted that the relationship between
our pulse-oximetry regressor and the resting BOLD signal is similar to
previous findings (Tong and Frederick, 2010, 2012; Verstynen and
Deshpande, 2011).

The t-statistic maps demonstrating the spatial variability in the
strengthof BOLD–CBF associations are shown in Fig. 5; a sample individ-
ual t-map (uncorrected p b 0.01) and the corresponding group t-maps
(uncorrected pb0.005) are shown in Figs. 5a and b, respectively. Volu-
metric t-statistics are overlaid on a cortical surface atlas (supplied by
FreeSurfer (http://surfer.nmr.mgh.harvard.edu), Dale et al., 1999;
Fischl et al., 1999). While the coupling between BOLD and CBF during
resting-state was highly variable across the brain, themost significantly
positive coupling was found in the regions of DMN, including PCC, me-
dial prefrontal cortex (MPFC), and lateral parietal cortex (LPC). More-
over, we observed a strong positive coupling between BOLD and CBF
fluctuations within the visual network (the primary visual area), and
the task-positive network, including the IPS, IPCS, dACC andMT regions.
We further tested the BOLD–CBF coupling within ultra-low frequencies
(0.009–0.05Hz, where there is minimal potential overlap between CBF
signal and BOLD contamination), as shown in Fig. 5c. Moreover, a
map of BOLD–CBF coupling without compensating for time shifts
between BOLD and the vascular regressors (i.e. CBF and pulse oximetry
waveforms) is shown in Fig. 5d. In all cases, while statistical significance
varied, the spatial distribution of significantly positive BOLD–CBF
coupling remained consistent with the major nodes of the DMN and
the task-positive network (Figs. 5c and d). These results suggest
that our estimated BOLD–CBF coupling during resting state is not likely
to be dominated by BOLD–CBF cross-contamination and time-shift
correction, and represents synchronized oscillations of BOLD and
CBF.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://surfer.nmr.mgh.harvard.edu
http://www.mccauslandcenter.sc.edu/mricro/mricron/
http://www.mccauslandcenter.sc.edu/mricro/mricron/
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Fig. 4. Regional-mean time series of BOLD (blue) and CBF (red) in select brain regions.We examined the posterior cingulate cortex (PCC, (a, c)) and the right dorsolateral prefrontal cortex
(DLPFC-R, (b, d)). The time series for one illustrative subjective are shown in (a) and (b), whereas the corresponding group-average time courses are shown in (c) and (d). The error bars
represent the standard error of the mean (SEM) across individuals at each time point.
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Linear regression of the group-average t-statistics (CBF vs. BOLD)
against MRA-derived resting-state macrovascular volume fraction (V0)
is shown in Fig. 6. Regression analysis results indicate that the degree
of positive coupling between BOLD and CBF significantly increased as
the macrovascular blood volume fraction decreased (R2 = 0.71). Inci-
dentally, our voxel-wise paired t-test did not reveal a significant rela-
tionship between BOLD–CBF coupling and ASL-derived baseline
perfusion values.
max t-stat: 10.59  

Individual-Level t-Maps Associated with  
the Regression between BOLD and CBF 

a Group-Levelb

Fig. 5. Association between resting-state BOLD and CBF time course: t-statistics. (a) A sample in
BOLD–CBF coupling of (b) low-frequency oscillations (0.009–0.071 Hz, uncorrected p b 0.005),
frequency oscillations without shifting the BOLD signal with respect to the vascular regressor
significantly consistent in prominent resting-state networks (including theDMNandvisual netw
within ultra-low frequencies minimally overlapped with the frequency band of BOLD contami
nodes of DMN and task-positive network. In addition, the low-frequency BOLD–CBF coupling w
not compensated for. These suggest that our estimated BOLD–CBF coupling is not likely to be d
sents synchronized oscillations of BOLD and CBF. Abbreviations: PFC: prefrontal cortex, PCC: p
intraparietal sulcus, IPCS: inferior precentral sulcus, dACC: dorsal anterior cingulate cortex, MT
Discussion

Dynamic cerebrovascular contributions to resting-state BOLD fluctuations

Since the BOLD effect, based on both CBF and oxygen extraction,was
initially introduced by Ogawa et al. (1992, 1993), several biophysical
models of the cerebrovascular contribution to the BOLD signal have
been proposed (Buxton et al., 1998; Davis et al., 1998; Hoge et al.,
 t-Maps 
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Group-Level t-Maps (Ultra-Low Freq.) c
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dividual t-map (uncorrected pb 0.01), and the corresponding group t-maps for testing the
(c) ultra-low frequency oscillations (0.009–0.05 Hz, uncorrected p b 0.005), and (d) low-
s, including CBF and pulse oximetry (uncorrected p b 0.01). Note that CBF and BOLD are
ork, labeled in yellow) aswell as in the task-positive network (marked in cyan).Moreover,
nation, the spatial distribution of BOLD–CBF coupling remained consistent with the major
as preserved when the potential time delays between BOLD and vascular regressors were
ominated by BOLD–CBF cross-contamination or by the time-delay estimations, but repre-
osterior cingulate cortex, MPFC: medial prefrontal cortex, LPC: lateral parietal cortex, IPS:
: medial temporal region.
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Fig. 6. Linear regression of the regional mean t-statistics of the BOLD–CBF association
against resting blood volume fraction (V0) associated with regional vasculature. The
coefficient of determination (R2) was 0.71. The error bar indicates the standard error of
the mean (SEM). The degree of the positive coupling between BOLD and CBF significantly
decreased as the macrovascular volume fraction (V0) increased.
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1999; Kim et al., 1999). According to the Balloon Model (Buxton et al.,
1998), stimulus-evoked BOLD response is determined by two state
variables (i.e. cerebral blood volume (CBV) and deoxy-hemoglobin
content) and one input variable (CBF), with CBF being a major and
undisputed contributor to BOLD signal changes. In addition, in calibrat-
ed BOLD (Davis et al., 1998; Hoge et al., 1999; Kim et al., 1999), the task-
induced BOLD response was modeled as a function of CBF and CMRO2

changes. Although these BOLD models are based on stimulus-evoked
neuronal activity (i.e., neurovascular couplingmechanism), we hypoth-
esize that CBF changes are a primary contributor to the BOLD signal in
intrinsic BOLD fluctuations as well.

While the dynamic relationship between CBF and BOLD signal fluc-
tuations is not clear, several lines of evidence support our adoption of
a linear relationship as a good approximation. Recent animal experi-
ments (Hyder et al., 2010) showed a linear relationship between hemo-
dynamic responses (such as BOLD, CBF, CBV) and neuronal activity in an
event-related paradigm, suggesting that the linear relationship between
low-level vascular and neuronal variations underlying steady-state
BOLD may continue into the dynamic state. Furthermore, during the
post-stimulus BOLD undershoot, a significant CBF participation was
observed, and in re-analysis of the data from Chen and Pike (2009),
the amplitudes of BOLD and CBF undershoots were successfully fit to a
linear model (data not shown). The idea of approximate linearity
between low-amplitude BOLD and CBF fluctuations was tested and
adopted in a recent report (Fukunaga et al., 2008) for estimation of
dynamic CMRO2 in resting-state data.

Our analysis approach exploits this approximate linearity between
low-amplitude BOLD and CBF fluctuations. The first key finding of this
work is that the dynamic characteristics of resting-state BOLD fluctua-
tion significantly correspond to spontaneous fluctuations in CBF, as
shown in Fig. 5. Our approach is novel in that we isolated the local
cerebrovascular contribution (i.e. CBF) from the global vascularmodula-
tion of the BOLD signal (i.e., the pulse-oximetry recording). We found
the coupling between BOLD and CBF during resting-state to be highly
variable across the brain, but wasmost significant within major regions
of resting-state networks (including the DMN, the visual network and
the task-positive network). Of note, the physiological significance of
the task-positive network is still controversial, being a potential artifact
induced by “global signal regression” (i.e. removal of whole-brain aver-
age time-series from the data) (Chang and Glover, 2009; Fox et al.,
2009; Murphy et al., 2009). However, in this work, we did not perform
the debatable global signal regression, and limited our noise regressors
to specific noise ROIs, thus precluding such artifacts. Furthermore, we
observed consistent correlations between BOLD and CBF within both
the task-positive network and the DMN, which are unlikely to result
solely from artifacts, and attest to the neuronal significance of both
networks (Fox et al., 2005, 2009; Chang and Glover, 2009).

Previous studies have argued that spontaneous CBF fluctuations in
resting-state functional networks reflect neuronal activity (Biswal
et al., 1997; Chuang et al., 2008; Fukunaga et al., 2008; Liang et al.,
2013; Viviani et al., 2011; Zou et al., 2009). Specifically, using positron
emission tomography (PET), Raichle et al, (2001) observed that the
CBF values in a set of regions (including the PCC, MPFC, thalamus, and
insula) are higher than the whole-brain average resting CBF. Similar re-
gions were reported to exhibit higher resting CBF fluctuations as mea-
sured using ASL (Zou et al. (2009). Moreover, a recent study (Liang
et al., 2013) showed a stronger correlation betweenmeanCBF and func-
tional connectivity strength in the DMN and executive-control net-
works. Together with these findings, our results suggest that within
the major nodes of established resting-state brain networks, the mech-
anism of vascular regulation underlying resting-state BOLD fluctuations
are highly reflective of CBF fluctuations, which have in turn been closely
tied to neuronal activity (Boxerman et al., 1995).Whilewe did notfinda
significant relationship between static quantitative CBF and the BOLD–
CBF coupling strength in our particular dataset, it is conceivable that a
larger dataset, spanning a wider range of CBF levels, may reveal such
an association.

Relationship between resting-state CBF–BOLD coupling and regional static
vascular content

A second key finding of this work is that the statistical strength and
degree of coupling between resting-state BOLD and CBF signals is signif-
icantly reduced as macrovascular volume fraction increased — that is,
BOLD and CBF appear to be less coupled in voxels near large vessels.
While MRA captures both arterial and venous vessels, this finding is
limited to regions exhibiting significant BOLD–CBF coupling, and is
therefore relevant mainly for non-arterial vessels. In voxels containing
the highest V0 values, the BOLD–CBF coupling is weakest, potentially
due to a weak macrovascular contribution to ASL-derived CBF. More
specifically, as the intravascular contribution to the BOLD response is
often strongest in small-to-medium-sized vessels (Boxerman et al.,
1995), we speculate that the resting-state CBF–BOLD link that we
observe is not dominated by extravascular BOLD effects,which aremax-
imal near the largest venous vessels. In other words, our results imply
that the more the intravascular effect dominates, the stronger the
CBF–BOLD coupling. In addition, given that smaller veins are more
proximal to the sites of activation, our results suggest that the resting-
state BOLD signal components that are more tightly regulated by CBF
fluctuations may be more specific to neuronal activity.

These results are in keeping with observations during functional ac-
tivation (Cho et al., 2012; Polimeni et al., 2010) and vascular challenges
(Dagli et al., 1999). More specifically, also using MRA data, Cho et al.
(2012) observed that the smaller the vessel size, the greater the increase
in MRA signal intensity during neuronal stimulation, supporting an in-
creasing neuronal specificity with decreasing vessel size. Conversely,
several studies (Birn, 2012; Dagli et al., 1999; Polimeni et al., 2010)
showed that the neuronal specificity of the BOLD response decreased
near large blood vessels due to non-neuronal physiological noise. This
is supported by a recent high spatial resolution study (Polimeni et al.,
2010) demonstrating that the accuracy of the functional activation pat-
tern degraded near the pial surface. In support of these past reports, our
observation that BOLD and CBF dynamics aremost discordant near large
vessels is evidence for the microvascular dominance of CBF, and further
demonstrates that CBF fluctuations are less likely to be influenced by
non-neuronally-specific signals that are typical near largemacrovessels.
Furthermore, our results suggest that regional CBF fluctuations,
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presumably reflective of neuronal activity, may surpass the effect of
global vascular fluctuations in strength, and may dominate the
resting-state BOLD signal at the local scale inmajor functional networks.

Potential caveats

One important concern in a study of this nature isminimizing poten-
tial BOLD contamination of the CBF signal, and this was indeed the pri-
mary focus in developing our methodology. To minimize the BOLD
contamination within a low-frequency range, we high-pass filtered
the ASL signal at a cut-off frequency of 1/(4TR) (i.e., 0.071 Hz), and
demodulated it to a low-frequency range. Arguably, these processing
steps may not remove multiplicative BOLD contamination in the entire
frequency band (Chuang et al., 2008), which may affect the correlation
between regional BOLD and CBF fluctuations. However, many studies
(Wu et al., 2008; Zou et al., 2009) showed that BOLD fluctuations
during resting-state were dominant within low-frequency ranges
(0.01–0.06 Hz), and that high frequency BOLD signals were relatively
low in gray matter. Therefore, the effect of high-frequency BOLD con-
tamination of CBF fluctuations is expected to be negligible and would
not significantly bias the spatial distribution of coupling between
BOLD and CBF during resting-state. This is further supported by the spa-
tial heterogeneity of the CBF–BOLD associations as well as the global
cardiac correlations with BOLD and CBF data.

Another potential limitation is the influence of physiological noise
on the estimated coupling between BOLD and CBF fluctuations. To iso-
late physiological noise (mostly arising from cardiac and respiratory
sources) from the BOLD signal, we included the pulse oximetry wave-
form as a nuisance regressor in our GLM (Verstynen and Deshpande,
2011). In addition, we regressed significant physiological noise out of
theCBFfluctuations in theGLM.Nonetheless, other physiological factors
may still contribute to the observed cerebrovascular fluctuations. For
example, variations in breath-to-breath respiration depth cause
changes in the arterial concentration of carbon dioxide (CO2), a potent
vasodilator, which induces increases in CBF and BOLD (Birn, 2012).
Although a recent study (Van Dijk et al., 2010) showed that regressing
out the white matter and CSF signals could be sufficient for minimizing
such effects, more elaborate methods involving direct physiological
measures may enhance the sensitivity for detecting intrinsic neuronal
activity-related signals. Regardless of the potential physiological biases,
our objective in this work is to quantify the relationship between vascu-
lar and BOLD fluctuations. The precise origins of vascular fluctuations
and their influence on neuronal activity are beyond the scope of this
work, but will be the focus of our future work.

A third potential limitation is the accuracy of the vessel segmenta-
tions obtained from the MRA data, which might affect our static blood
volume fraction estimation. Due to limitations in the spatial resolution
and sensitivity of the 3D TOF MRA technique, certain vessels may not
be detectable by MRA, and certainly not the microvasculature. In addi-
tion, suboptimal thresholding in the segmentation process may lead to
a false-negative or false-positive detection of blood vessels. Neverthe-
less, our choice of the TOF MRA technique was based on its superiority
over other available techniques. Moreover, as we restricted the use of
MRA-segmented vessels to calculating large-vessel fraction, low
sensitivity of MRA to the microvasculature is not likely to alter the
main findings of this work. Furthermore, the strong correlation
observed between vascular volume fraction and CBF–BOLD coupling
precludes the possibility of dominance by random biases.

Lastly, the group size in this study is relatively small (N=9 subjects,
8 degrees of freedom), resulting in comparatively low statistical power
and a long-tailed t-distribution (Desmond and Glover, 2002; Murphy
and Garavan, 2004). This may account for the noisy appearance of the
group-level t-statistic maps seen in Fig. 5. However, the regions
exhibiting significant BOLD–CBF coupling (detected by pb0.00005) en-
compass the main nodes of the DMN and the task-positive network,
suggesting true neuronal/physiological underpinnings of our findings
despite the small sample size. Future work may utilize meta-analyses
to boost sample size and ensure the generalizability of our findings.

Conclusion

Exploiting regionally specific CBF fluctuation and MRA-derived
blood volume fraction, we observed a significant synchronization
between spontaneous BOLD and CBF fluctuations, particularly within
major resting-state networks. Moreover, we showed that this resting-
state CBF–BOLD coupling was strongest in regions containing smaller
blood vessels. Our results suggest that the component of the resting-
state BOLD fluctuation that is more closely regulated by dynamic
changes in CBF is likely to be more specific to neuronal activity.
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