Lawrence Berkeley National Laboratory
Recent Work

Title
EXPERIMENTAL TEST OF LOCAL HIDDEN-VARIABLE THEORIES

Permalink
https://escholarship.org/uc/item/5qs9830k

Author
Freedman, Stuart J.

Publication Date
1972
EXPERIMENTAL TEST OF
LOCAL HIDDEN-VARIABLE THEORIES

Stuart J. Freedman and John F. Clauser

January 1972

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
EXPERIMENTAL TEST OF LOCAL HIDDEN-VARIABLE THEORIES

Stuart J. Freedman and John F. Clauser
Department of Physics and Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720

January 1972

ABSTRACT

We have measured the linear polarization correlation of
the photons emitted in the atomic cascade $4p^2 \, ^1S_0 \rightarrow 4s4p \, ^1P_1 \rightarrow 4s^2 \, ^1S_0$
of calcium. It has been shown by Bell that local hidden-variable
theories yield predictions for an idealized correlation of this type
which are in conflict with the predictions of quantum mechanics. This
result is expressed in terms of an inequality ("Bell's inequality")
that was subsequently generalized to a form applicable to the present
experiment. Our data are in agreement with quantum mechanics and
violate the restriction imposed by local hidden variables to high
statistical accuracy. Thus, this experimental result is strong evidence
against local hidden-variable theories.
Since quantum mechanics was first developed, there have been repeated suggestions that its statistical features possibly might be described by an underlying deterministic substructure. Such features, then, arise because a quantum state represents a statistical ensemble of "hidden-variable states." Proofs by von Neumann and others, demonstrating the impossibility of a hidden-variable substructure consistent with quantum mechanics, rely on various assumptions concerning the character of the hidden variables. Bell has argued that these assumptions are unduly restrictive. However, by considering an idealized case of two spatially separated but quantum-mechanically correlated systems, he was able to show that any hidden-variable theory satisfying only the natural assumption of "locality" also leads to predictions ("Bell's inequality") in conflict with quantum mechanics.

Bell's proof was extended to realizable systems by Clauser, Horne, Shimony, and Holt, who also pointed out that their generalization of Bell's inequality can be tested experimentally, thus testing all local hidden-variable theories, but that existing experimental results were insufficient for this purpose. This letter reports the results of an experiment which are sufficiently precise to rule out local hidden-variable theories with high statistical accuracy.

In the present work we measured the correlation in linear polarization of two photons γ_1, γ_2 emitted in a $J = 0 \rightarrow J = 1 \rightarrow J = 0$ atomic cascade. The decaying atoms were viewed by two symmetrically placed optical systems, each consisting of two lenses, a wavelength filter, a rotatable and removable polarizer, and a single-photon detector (see Fig. 1). The following quantities were measured:
R(\phi): The coincidence rate for two-photon detection, as a function of the angle \(\phi \) between the planes of linear polarization defined by the orientation of the inserted polarizers;

- \(R_1 \): The coincidence rate with polarizer 2 removed;
- \(R_2 \): The coincidence rate with polarizer 1 removed;
- \(R_0 \): The coincidence rate with both polarizers removed.

Quantum mechanics predicts that \(R(\phi) \) and \(R_0 \) are related as follows:

\[
\frac{R(\phi)}{R_0} = \frac{1}{4} \left(\frac{1}{\epsilon^2_M + \epsilon^2_m} \right) \left(\epsilon^2_M + \epsilon^2_m \right) + \frac{1}{4} \left(\frac{1}{\epsilon^2_M - \epsilon^2_m} \right) \left(\epsilon^2_M - \epsilon^2_m \right) F_1(\theta) \cos 2\phi
\]

(1a)

while

\[
\frac{R_1}{R_0} = \frac{1}{2} \left(\frac{\epsilon^2_M + \epsilon^2_m}{\epsilon^2_m} \right)
\]

(1b)

and

\[
\frac{R_2}{R_0} = \frac{1}{2} \left(\frac{\epsilon^2_M + \epsilon^2_m}{\epsilon^2_M} \right).
\]

(1c)

Here \(\epsilon^1_M (\epsilon^1_m) \) is the efficiency of the \(i \)th polarizer for light polarized parallel (perpendicular) to the polarizer axis, and \(F_1(\theta) \) is a function of the half-angle \(\theta \) subtended by the primary lenses. It represents a depolarization due to non-collinearity of the two photons, and approaches unity for infinitesimal detector solid angles. (For this experiment, \(\theta \approx 30^\circ \), and \(F_1(30^\circ) \approx 0.99 \).)

We make the following assumptions for any local hidden-variable theory:

1. The two photons propagate as separated localized particles.
2. A binary selection process occurs for each photon at
each polarizer (transmission or no-transmission). This selection does not depend upon the orientation of the distant polarizer.

In addition, we make the following assumption to allow a comparison of the generalization of Bell's inequality with our experiment:

(3) All photons incident on a detector have a probability of detection that is independent of whether or not the photon has passed through a polarizer.

The above assumptions constrain the coincidence rates by the following inequalities:

\[-1 \leq \Delta(\phi) \leq 0 \]

\[\Delta(\phi) = \frac{3R(\phi)}{R_0} - \frac{R(3\phi)}{R_0} - \frac{R_1 + R_2}{R_0} \]

For sufficiently small detector solid angles and highly efficient polarizers, these inequalities (2) are not satisfied by the quantum mechanical prediction (1) for a range of values of \(\phi \). Maximum violations occur at \(\phi = 22^{\circ} \) [\(\Delta(\phi) > 0 \)] and \(\phi = 67^{\circ} \) [\(\Delta(\phi) < -1 \)]. At these angles of maximum violation, inequalities (2) can be combined into the simpler and more convenient expression:

\[\delta = \left| \frac{R(22^{\circ})}{R_0} - \frac{R(67^{\circ})}{R_0} \right| - \frac{1}{4} \leq 0 \],

which does not involve \(R_1 \) or \(R_2 \).

The experimental arrangement was similar to that of Kocher and Commins. A calcium atomic beam effused from a tantalum oven, as shown in Fig. 1. The continuum output of a deuterium arc lamp
(ORIEL C-42-72-12) was passed through an interference filter (250 Å FWHM, 20% transmission at 2275 Å) and focused on the beam. Resonance absorption of a 2275-Å photon excited calcium atoms to the 3d4p 1P 1 state. Of the atoms that did not decay directly to the ground state, about 7% decayed to the 4p 2 1S 0 state, from which they cascaded through the 4s4p 1P 1 intermediate state to the ground state with the emission of two photons at 5513 Å (γ1) and 4227 Å (γ2) (see Fig. 2). At the interaction region (roughly, a cylinder 5 mm high and 3 mm in diameter) the density of the calcium was about 1×10^10 atoms/cm^3. To avoid spherical aberrations which would have reduced counter efficiencies, aspheric primary lenses (8.0 cm dia, 'f = 0.8) were used. Photons γ1 were selected by a filter with 10-Å FWHM and 50% transmission, and γ2 by a filter with 6-Å FWHM and 20% transmission. The requirement for large efficient linear polarizers led us to employ "pile of plates" polarizers. Each polarizer consisted of ten 0.3-mm thick glass sheets inclined nearly at Brewster's angle. The sheets were attached to hinged frames, and could be folded completely out of the optical path. A geneva mechanism rotated each polarizer through increments of 22.5°. The measured efficiencies of the polarizers were: ɛ_M^1 = 0.97 ± 0.01, ɛ_M^2 = 0.038 ± 0.004, ɛ_m^1 = 0.96 ± 0.01, and ɛ_m^2 = 0.037 ± 0.004. The photomultiplier detectors (RCA C31000E, QE ≈ 0.13 at 5513 Å; and RCA 8850, QE ≈ 0.28 at 4227 Å) were cooled, reducing dark rates to 75 and 200 counts/sec, respectively. The measured counter efficiencies with polarizers removed were η_1 ≈ 1.3×10^{-3} and η_2 ≈ 1.1×10^{-3}.

A diagram of the electronics is included in Fig. 1. The overall
system time resolution was about 1.5 nsec. The short intermediate state lifetime (-5 nsec) permitted a narrow coincidence window (8.1 nsec). A second coincidence channel displaced in time by 50 nsec monitored the number of accidental coincidences, the true coincidence rate being determined by subtraction. A time-to-amplitude converter and pulse-height analyzer measured the time-delay spectrum of the two photons. The resulting exponential gave the intermediate state lifetime.

The coincidence rates depended upon beam and lamp intensity, the latter gradually decreasing during a run. The typical coincidence rate with polarizers removed ranged from 0.3 to 0.1 counts/sec, and the accidental rate ranged from 0.01 to 0.002 counts/sec. Long runs required by the low coincidence rate necessitated automatic data collections.

The system was cycled with 100-sec counting periods. Periods with one or both polarizers inserted alternated with periods in which both polarizers were removed. Both polarizers rotated according to a prescribed sequence. For a given run, \(R(\phi)/R_0 \) was calculated by summing counts for all configurations corresponding to angle \(\phi \) and dividing by half the sum of the counts in the adjacent periods of the sequence in which both polarizers were moved. Data for \(R_1/R_0 \) and \(R_2/R_0 \) was analyzed in a similar fashion. The values given here are averages over the orientation of the inserted polarizer. This cycling and averaging procedure minimized the effects of drift and apparatus asymmetry.

The results of the measurements of the correlation \(R(\phi)/R_0 \) are shown in Fig. 3. All error limits are conservative estimates of one standard deviation. Using the values at 22\(^\circ\) and 67\(^\circ\), we obtain
\[\delta = 0.050 \pm 0.008 \] in clear violation of inequality (3). Furthermore, we observe no evidence for a deviation from the predictions of quantum mechanics, calculated from the measured polarizer efficiencies and solid angles, and shown as the solid curve in Fig. 3. We consider these results to be strong evidence against local hidden-variable theories.

The authors wish to express their sincerest appreciation for guidance and help from Prof. Eugene Commins, to Prof. Charles Townes for his encouragement of this work, and to M. Simmons for helpful suggestions.
References

* Work supported by U.S. Atomic Energy Commission.

2. J. S. Bell, Physics 1, 195 (1964).

4. A hidden-variable theory need not require that R₁ and R₂ be independent of the orientation of the inserted polarizer, and we do not assume this independence in our data analysis. However, the results are consistent with R₁ and R₂ being independent of angle, and for simplicity they are so denoted.

7. The inequality \(\Delta(\phi) \leq 0 \) is derived in Refs. 3 and 5. The other forms of the hidden-variable restriction are obtained by similar arguments; see S. Freedman, Ph.D. thesis, University of California, Berkeley, Lawrence Berkeley Laboratory Report LBL-391, 1972 (unpublished).

9. An estimate of the accidental rate was also obtained from the singles rates. The two estimates gave consistent results. In fact, our conclusions are not changed if accidentals are neglected entirely; the signal-to-accidental ratio with polarizer removed is about 40 to 1 for the data presented.

11. The results that are of interest in comparison with the hidden-variable inequalities are \(R_1/R_0 = 0.497 \pm 0.009 \), \(R_2/R_0 = 0.499 \pm 0.009 \), \(R(22^\circ)/R_0 = 0.400 \pm 0.007 \), and \(R(67^\circ)/R_0 = 0.100 \pm 0.003 \). We thus obtain \(\Delta(22^\circ) = 0.104 \pm 0.026 \) and \(\Delta(67^\circ) = -1.097 \pm 0.018 \) in violation of inequalities (2).
Figure Captions

Fig. 1. Schematic diagram of apparatus and associated electronics. Scalers (not shown) monitored the outputs of the discriminators and coincidence circuits during each 100-sec count period. The contents of the scalers and the experimental configuration were recorded on paper tape and analyzed on an IBM 1620-II computer.

Fig. 2. Level scheme of calcium. Dotted lines show the route for excitation to the initial state $4p^2 \,^1S_0$.

Fig. 3. Coincidence rate with angle ϕ between the polarizers, divided by the rate with both polarizers removed, plotted versus the angle ϕ. The solid line is the prediction by quantum mechanics, calculated using the measured efficiencies of the polarizers and solid angles of the experiment. These data represent about ten days of running.
Fig. 2
$R(\phi)/R_0$ vs. Angle ϕ in Degrees

XBL 7112-1793

Fig. 3
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.