Title
PORTABLE FIELD WATER SAMPLE FILTRATION UNIT

Permalink
https://escholarship.org/uc/item/5rj0p9tz

Author
Hebert, Alvin J.

Publication Date
1976-10-01
PORTABLE FIELD WATER SAMPLE FILTRATION UNIT

Alvin J. Hebert and Gardener G. Young

October 1976

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PORTABLE FIELD WATER SAMPLE FILTRATION UNIT†

Alvin J. Hebert and Gardener G. Young
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

The need for a lightweight back-packable filtration unit that could easily be cleaned without cross-contamination at the part-per-billion level while allowing rapid filtration of boiling hot and sometimes muddy water has given rise to the unit shown in Figure 1.

Filtrations are performed by pouring the solution into the funnel or by placing a piece of tygon tubing down a well and drawing the water up and through the filter. Boiling water has been drawn up old geothermal well pipes as high as 5 meters in this manner. Filtration usually takes less than one or two minutes per 500 ml bottle when the water is not too muddy. During the filtration process, it is important that bubbles not be allowed in the input line, otherwise the unit will cease functioning properly until it is reopened and a new filter inserted.

Field and laboratory tests indicate essentially no changes in carbonic acid or bicarbonate or carbonate ion concentrations when filtrations are performed at approximately 1/3 atmosphere of vacuum even though the pH value may range from 3.2 to 9.4.

The aluminum tubing sleeve shown in Figure 1 on one of the 500 ml. Nalgene bottles guards against bottle collapse when filtering
very hot water. The snap-in nipples for line connections to the lid of the bottle were machined from nylon. Total unit weight without lines or bottles is 3.5 kg.

Figure 2 shows the machined groove pattern of the main body tef­lon plate. These grooves are "round-bottomed" to facilitate cleaning. The tygon lines are connected to this plate via a small nylon nipple and viton O-ring to insure vacuum integrity. Also a large viton O-ring is placed in the outer groove. The 16.5 cm. diameter unit is designed to accept a standard Millipore acetate filter (variety HAWP-142, 0.45 micron, 142 mm plain white filter sheet) which is laid over the groove plate and viton O-ring prior to each clamp down and filtration. No separate filter support is necessary. A 2mm deep recess is machined into the mating top teflon disk shown in Figure 1.

The eight central holes shown in Figure 2 lead to the nylon nipple connector which fits into a mating recess on the other side. The main body teflon plates are backed by 1.27 cm thick aluminum plates.

The hand vacuum pump is manufactured by the Nalgene Labware Division of NALGE Sybron Corporation. The legs on the unit are easily removed for backpacking. The ends of the tie down bolts are expanded so that the brass butterfly nuts will not fall off.
References

†Reference to this device has been made in the publications listed. This work was done with support from the U. S. Energy Research and Development Administration.

Harold A. Wollenberg, Sampling Hot Springs For Radioactive and Trace
Figure Captions

Fig. 1. Portable Field Water Filtration Unit. BBC 7410-7355.

Fig. 2. Groove and Hole Pattern for Teflon Bottom Plate in Filter Unit. The cross section view of the nipple hub is enlarged by x2 relative to the 16.5 cm. diameter disk. XBL 758-3817.
Fig. 1 Portable Field Water Filtration Unit
Fig. 2 Groove and Hole Pattern for Teflon Bottom Plate in Filter Unit.
This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.