Title
High Speed Rail in Japan: A Review and Evaluation of the Shinkansen Train

Permalink
https://escholarship.org/uc/item/5s48m11f

Author
Taniguchi, Mamoru

Publication Date
1992-04-01
High Speed Rail in Japan:
A Review and Evaluation of
the Shinkansen Train

Mamoru Taniguchi

Working Paper
UCTC No. 103

The University of California
Transportation Center
University of California
Berkeley, CA 94720
The University of California Transportation Center

The University of California Transportation Center (UCTC) is one of ten regional units mandated by Congress and established in Fall 1988 to support research, education, and training in surface transportation. The UC Center serves federal Region IX and is supported by matching grants from the U.S. Department of Transportation, the California Department of Transportation (Caltrans), and the University.

Based on the Berkeley Campus, UCTC draws upon existing capabilities and resources of the Institutes of Transportation Studies at Berkeley, Davis, Irvine, and Los Angeles; the Institute of Urban and Regional Development at Berkeley; and several academic departments at the Berkeley, Davis, Irvine, and Los Angeles campuses. Faculty and students on other University of California campuses may participate in Center activities. Researchers at other universities within the region also have opportunities to collaborate with UC faculty on selected studies.

UCTC's educational and research programs are focused on strategic planning for improving metropolitan accessibility, with emphasis on the special conditions in Region IX. Particular attention is directed to strategies for using transportation as an instrument of economic development, while also accommodating to the region's persistent expansion and while maintaining and enhancing the quality of life there.

The Center distributes reports on its research in working papers, monographs, and in reprints of published articles. It also publishes Access, a magazine presenting summaries of selected studies. For a list of publications in print, write to the address below.

University of California Transportation Center

108 Naval Architecture Building
Berkeley, California 94720
Tel: 510/643-7378
FAX: 510/643-5456

The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation.
High Speed Rail in Japan:
A Review and Evaluation of the Shinkansen Train

Mamoru Taniguchi

Institute of Urban and Regional Development
University of California at Berkeley
Berkeley, CA 94720

CALIFORNIA HIGH SPEED RAIL SERIES

Working Paper
April 1992

UCTC No. 103

The University of California Transportation Center
University of California at Berkeley
ACKNOWLEDGEMENT

I would like to express my thanks to director Peter Hall, who provided me with a chance to write this paper. I am also thankful to the High Speed Rail Research members, who gave me helpful advice, including Dan Leavitt, Brian Sands, and Walt Streeter. My thanks are also due to the staff of the Institute of Urban and Regional Development at the University of California at Berkeley, who made me a most welcome visitor, including Martha Conway and David Van Arnam, who helped produce this paper.

I also extend my appreciation to those who provided me with useful information, especially Professor Kozo Amano and Lecturer Dai Nakagawa at the University of Kyoto.
PREFACE

This is one of a series of reports now being produced as the first output of our study of the potential for a high-speed passenger train service in California. Each report deals with a specific high-speed train technology; it attempts an evaluation, standardized as far as available data permit, of its technical and economic viability.

Specifically, each report assesses the particular high-speed technology against a number of criteria:

1. Technical Performance: configuration of roadbed in terms of gradients, curvature, and construction cost; power sources; capacity and speed; capacity to integrate with existing transportation facilities.

2. Economic performance: traffic levels; revenues; financial appraisal and overall cost-benefit analysis; level of public subsidy required, if any.

3. Resource consumption and environmental performance: type and amount of energy required; impact on non-renewable resources; environmental impact, including emissions, noise, visual intrusion and effect on local communities.

The present series includes five studies. Two companion studies, on British Rail's InterCity 125 and 225 services and on Tilting Trains (the Italian Pendolino and the Swedish X-2000 service), will follow shortly. Thereafter, a systematic comparative analysis will be published.

The CalSpeed study will continue with preliminary route alignments, also to be produced shortly, followed by market assessments, to be completed in Fall 1992. These will bring to a close the present phase of work, which will be the subject of an overall report also to be completed in Fall 1992.

We gratefully acknowledge the support provided by the U.S. Department of Transportation and the California State Department of Transportation (Caltrans) through the University of California Transportation Center. Of course, any errors of fact or interpretation should be assigned to us and not our sponsors.

PETER HALL
Principal Investigator
REVIEW AND EVALUATE EXISTING SYSTEMS: SHINKANSEN (JAPAN)

INTRODUCTION

This report aims to show the detail of the Shinkansen system, and to allow a comparison with other High Speed Rail systems for use in California. The Shinkansen system has operated since 1964, with maximum speed from 131 mph to 172 mph in Japan.

The following major subject areas are examined in this report:

1. Development History
2. Engineering: Train
3. Engineering: Track
4. Services
5. Economic Results
6. Environment
7. Future Extension
8. Summary

The following abbreviations are used in this report:

JNR the Japanese National Railways
ATC automatic train control
CTC centralized train control
COMTRAC computer-aided traffic control system

This report is part of the work of the California High Speed Rail Group at the Institute of Urban and Regional Development, University of California at Berkeley.
1. DEVELOPMENT HISTORY

Since Japanese conventional railway has been a narrow gauge system, it was necessary to construct a new standard gauge for more rapid service. In 1938, the first idea of a bullet train running at 125 mph between Tokyo and Shimonoseki was suggested. In 1940, construction began for the bullet train, but it stopped because of World War II. After 1958, "the business express Kodama," running at 57 mph average speed on a conventional line, connected Tokyo and Osaka in 6.5 hours, but service capacity was not enough for increasing travel demands.

A committee of Shinkansen (New Trunk Line) research was organized in 1957, and the first Shinkansen Line opened in 1964 between Tokyo and Osaka. The maximum speed of the first service was 131 mph and it took four hours between the two cities. After that, new lines in Sanyo, Tohoku, and Joetsu have extended, as shown in Figure 1, and vehicles have also been improved. Now it takes less than three hours between Tokyo and Osaka, and the Joetsu Shinkansen operates at 172 mph maximum speed. Within several years, it will operate at more than 188 mph using new rolling stock.

When the Tokaido Shinkansen opened its service in 1964, 60,000 passengers used Shinkansen on average per day. The number of passengers increased year by year, reaching 230 thousand passengers per day when EXPO '70 was held in Osaka in 1970. Table 1 shows the rate of increase, and each line has carried the following number of passengers in 1989.

<table>
<thead>
<tr>
<th>Line</th>
<th>Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokaidou</td>
<td>117 million</td>
</tr>
<tr>
<td>Sanyou</td>
<td>62 million</td>
</tr>
<tr>
<td>Tohoku</td>
<td>51 million</td>
</tr>
<tr>
<td>Joetsu</td>
<td>20 million</td>
</tr>
</tbody>
</table>

2. ENGINEERING: TRAIN

*Vehicle and Engine

The main features of the Shinkansen vehicles have improved, as shown in Table 2. Not only has the number of Shinkansen vehicles increased by about six times since its opening in 1964, but also many points in each vehicle have been improved. Type 961 vehicles have 2,200 kW power and operate at 172 mph maximum speed on the Joetsu line. The acceleration has now been improved to 1.0 (mi/h)s. Figure 2 shows the characteristic curve of engine that is used in Tohoku and Joetsu line. A typical train formation is shown in Figure 3.
Tokaido Line (Tokyo - Shin Osaka) Oct. 1, 1964
Sanyo Line (Shin Osaka - Okayama) Mar. 15, 1972
(Okayama - Hakata) Mar. 10, 1975
Tohoku Line (Omiya - Morioka) June 23, 1982
(Veno - Omiya) March 1985
Joetsu Line (Omiya - Niigata) Nov. 15, 1982
(Veno - Omiya) March 1985

○ All train station stop
○ Station
Figures in brackets () represent miles from Tokyo

Figure 1. Shinkansen Route Map
Table 1. Number of Passengers Carried by Shinkansen

<table>
<thead>
<tr>
<th>Year</th>
<th>Passengers carried (1,000 persons)</th>
<th>Passengers-kilometers (million km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY1965</td>
<td>30,967</td>
<td>10,951</td>
</tr>
<tr>
<td>1968</td>
<td>65,902</td>
<td>21,027</td>
</tr>
<tr>
<td>1969</td>
<td>71,574</td>
<td>22,816</td>
</tr>
<tr>
<td>1970</td>
<td>84,628</td>
<td>27,890</td>
</tr>
<tr>
<td>1971</td>
<td>85,354</td>
<td>26,795</td>
</tr>
<tr>
<td>1972</td>
<td>109,854</td>
<td>33,835</td>
</tr>
<tr>
<td>1973</td>
<td>128,079</td>
<td>38,989</td>
</tr>
<tr>
<td>1974</td>
<td>133,195</td>
<td>40,671</td>
</tr>
<tr>
<td>1975</td>
<td>157,218</td>
<td>53,318</td>
</tr>
<tr>
<td>1976</td>
<td>143,464</td>
<td>48,147</td>
</tr>
<tr>
<td>1977</td>
<td>126,796</td>
<td>42,187</td>
</tr>
<tr>
<td>1978</td>
<td>123,689</td>
<td>41,074</td>
</tr>
<tr>
<td>1979</td>
<td>123,767</td>
<td>40,986</td>
</tr>
<tr>
<td>1980</td>
<td>125,636</td>
<td>41,790</td>
</tr>
<tr>
<td>1981</td>
<td>125,619</td>
<td>41,717</td>
</tr>
<tr>
<td>1982</td>
<td>142,907</td>
<td>46,105</td>
</tr>
<tr>
<td>1983</td>
<td>161,349</td>
<td>50,440</td>
</tr>
<tr>
<td>1984</td>
<td>163,790</td>
<td>50,826</td>
</tr>
<tr>
<td>1985</td>
<td>179,833</td>
<td>55,422</td>
</tr>
<tr>
<td>1986</td>
<td>183,012</td>
<td>55,943</td>
</tr>
<tr>
<td>1987</td>
<td>206,817</td>
<td>57,414</td>
</tr>
<tr>
<td>1988</td>
<td>227,000</td>
<td>64,361</td>
</tr>
<tr>
<td>1989</td>
<td>238,000</td>
<td>65,964</td>
</tr>
</tbody>
</table>
Table 2. Main Features of the Shinkansen Vehicle and Engine

<table>
<thead>
<tr>
<th>Items</th>
<th>Cars For Tokaido & Sanyo Series 0</th>
<th>For high speed test Type 951</th>
<th>Prototype for nationwide Shinkansen network Type 951</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power system</td>
<td>AC 25 kV, 60 Hz</td>
<td>AC 25 kV, 60 Hz</td>
<td>AC 25 kV, 50/60 Hz</td>
</tr>
<tr>
<td>Continuous rating output of 2-car unit</td>
<td>1,480 kW</td>
<td>2,000 kW</td>
<td>2,200 kW</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>210 km/h</td>
<td>250 km/h or more</td>
<td>260 km/h or more</td>
</tr>
<tr>
<td>Axle load</td>
<td>less than 16 tons</td>
<td>less than 16 tons</td>
<td>less than 16 tons</td>
</tr>
<tr>
<td>Overall dimensions (L x W x H)</td>
<td>25 x 3.38 x 3.975 m</td>
<td>25 x 3.38 x 4.022 m</td>
<td>25 x 3.38 x 4 m</td>
</tr>
<tr>
<td>Trainset</td>
<td>16 cars, 400 m</td>
<td>2 cars, 50 m</td>
<td>4 cars, 150 m</td>
</tr>
<tr>
<td>Diameter of wheel</td>
<td>910 mm</td>
<td>1,000 mm</td>
<td>960 mm</td>
</tr>
<tr>
<td>Car body structure</td>
<td>Steel welded structure</td>
<td>Aluminium welded structure</td>
<td>Aluminium welded structure</td>
</tr>
<tr>
<td>Power transmission system</td>
<td>Flexible coupling drive, gear ratio 1 : 2.17</td>
<td>Flexible coupling drive and others, gear ratio 1 : 2.07</td>
<td>Parallel cardan shaft drive, gear ratio 1 : 2.40</td>
</tr>
<tr>
<td>Main transformer</td>
<td>1,650 / 1,500 / 150 kVA</td>
<td>2,410 / 2,260 / 150 kVA</td>
<td>3,300 / 2,950 / 360 kVA</td>
</tr>
<tr>
<td>Main rectifier</td>
<td>Tap-changer and silicon rectifier, mixed bridge connection, 1,650 kW</td>
<td>Thyristor-diode mixed bridge connection, 2,200 kW</td>
<td>Thyristor-diode mixed bridge connection, 2,400 kW</td>
</tr>
<tr>
<td>Traction motor</td>
<td>185 kW</td>
<td>250 kW</td>
<td>275 kW</td>
</tr>
<tr>
<td>Powering control</td>
<td>Tap changing of main transformer</td>
<td>Continuous phase control by thyristors</td>
<td>Continuous phase control by thyristors</td>
</tr>
<tr>
<td>Braking control</td>
<td>Dynamic brake and electro-magnetic straight air brake</td>
<td>Dynamic brake and eddy current rail brake</td>
<td>Dynamic brake and electric command air brake</td>
</tr>
<tr>
<td>Braking operation</td>
<td>ATC and manual</td>
<td>ATC and speed instruction system</td>
<td>ATC and ATO</td>
</tr>
<tr>
<td>Air conditioning</td>
<td>Heat pump units dispersed on roof</td>
<td>Centralized heat pump</td>
<td>Centralized cooler with heating coil</td>
</tr>
<tr>
<td>Power source for passenger accommodation</td>
<td>Tertiary winding of transformer 1 φ, 220 V</td>
<td>Tertiary winding of transformer 1 φ, 440 V</td>
<td>Motor-generator 3 φ, 440 V</td>
</tr>
</tbody>
</table>
Figure 2. Characteristic Curves

Traction motor 230 kW x 8
Weight 130 t

Figure 3. Train Formation of the Tohoku & Joetsu Shinkansen Lines

<table>
<thead>
<tr>
<th>Car No.</th>
<th>Type</th>
<th>Seats</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>Type 221</td>
<td>45 seats</td>
</tr>
<tr>
<td>No. 2</td>
<td>Type 226</td>
<td>99 seats</td>
</tr>
<tr>
<td>No. 3</td>
<td>Type 225</td>
<td>80 seats</td>
</tr>
<tr>
<td>No. 4</td>
<td>Type 226</td>
<td>95 seats</td>
</tr>
<tr>
<td>No. 5</td>
<td>Type 226</td>
<td>70 seats</td>
</tr>
<tr>
<td>No. 6</td>
<td>Type 226</td>
<td>95 seats</td>
</tr>
<tr>
<td>No. 7</td>
<td>Type 215</td>
<td>62 seats</td>
</tr>
<tr>
<td>No. 8</td>
<td>Type 226</td>
<td>95 seats</td>
</tr>
<tr>
<td>No. 9</td>
<td>Type 227</td>
<td>28 seats</td>
</tr>
<tr>
<td>No. 10</td>
<td>Type 226</td>
<td>95 seats</td>
</tr>
<tr>
<td>No. 11</td>
<td>Type 225</td>
<td>80 seats</td>
</tr>
<tr>
<td>No. 12</td>
<td>Type 222</td>
<td>55 seats</td>
</tr>
</tbody>
</table>

To Tokyo

To Morioka, Niigata
Intelligent Facilities in Train

A new series of Tokaido Shinkansen MU vehicles is provided with various intelligent information systems.

1. The Monitoring System for drivers: The driver's cab in the front car is provided with a set consisting of a central control unit, a CRT (cathode-ray tube) display, and a recorder. Each car is provided with a terminal unit. These are connected by a fiberglass optical transmission system. The display not only informs the driver about operating data, such as the present position of the train, but also indicates which device or equipment in which car is in trouble. In addition, the working condition of each device of each car can be displayed at any time.

2. Passenger Guidance Information System: The illuminated guidance device for passenger is located above the doorway at the end of each car. Figure 4 shows an example of this information. The distance to the next station and the running speed is displayed on real time, and tourist information about the region along the line is constantly scrolled.

Control System

The Shinkansen train is usually operated by ATC system. Shinkansen trains that run at 125 mph require a 1.9 mile distance to stop. That is a major reason to use ATC system. In the case that the train speed rises over the speed showed by the cab signal, the brake acts automatically to keep it within the indicated speed. The track is divided into block sections which are the basic units to confirm the train's position. The center of operation of the Shinkansen exists in the general control center, located in Tokyo. This center executes comprehensive control by using CTC and COMTRAC systems.

3. ENGINEERING: TRACK

Track Standard

There are a few differences in track standard between the original Tokaido and newer lines. Table 3 shows the main features and track standards of each line. Figures 5, 6, and 7 shows construction standards, as well as the general section and standard cross section of a tunnel on the Tohoku and Joetsu line. To operate trains safely under wind pressure, it is required to have enough space between tracks. According to several experiments (including a tunnel line), 0.8m width is enough to have a safe operation. To reduce noise from the track, a "resilient tie track"
While dwelling at a station and running up to 2 km after departure

While dwelling at a station and running up to 2 km after departure

Approaching intermediate station

Approaching terminal station

Fig. 3 Example of passenger guidance information system
Table 3. Comparison of Main Features of Each Shinkansen Line

<table>
<thead>
<tr>
<th>Item</th>
<th>Tokaido</th>
<th>Sanyo</th>
<th>Tōhoku</th>
<th>Hokkaido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route length</td>
<td>Tokyo—Shin Osaka 515 km</td>
<td>Shin Osaka—Okayama 283 km</td>
<td>Tokyo—Morioka 496 km</td>
<td>Okayama—Niigata 270 km</td>
</tr>
<tr>
<td>Tunnels</td>
<td>58 km (12 %)</td>
<td>223 km (57 %)</td>
<td>115 km (23 %)</td>
<td>105 km (20 %)</td>
</tr>
<tr>
<td>Bridges</td>
<td>57 km (11 %)</td>
<td>20 km (12 %)</td>
<td>31 km (8 %)</td>
<td>78 km (16 %)</td>
</tr>
<tr>
<td>Minimum curve radius</td>
<td>2,500 m</td>
<td>4,000 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum grade</td>
<td>201,000</td>
<td>181,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum longitudinal curve radius</td>
<td>10,000 m</td>
<td>15,000 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction gauge</td>
<td>Height: 7,700 mm</td>
<td>Width: 4,400 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolling stock gauge</td>
<td>Height: 5,450 mm</td>
<td>Width: 3,400 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td>60.8 kg/m, 1,500 m long-welded rails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track gauge</td>
<td>1434 mm (4' 8 ¼")</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation width</td>
<td>10.7 m</td>
<td>11.6 m</td>
<td>11.0 m</td>
<td>11.5 m</td>
</tr>
<tr>
<td>Distance between track centers</td>
<td>4.2 m</td>
<td>4.3 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power transmitting system</td>
<td>154 kV or 77 kV</td>
<td>275 kV or 220 kV</td>
<td>275 kV</td>
<td>275 kV</td>
</tr>
<tr>
<td>Feeding system</td>
<td>A.C. 25 kV 60 Hz Single phase</td>
<td>A.C. 25 kV 60 Hz Single phase</td>
<td>A.C. 25 kV 50 Hz Single phase</td>
<td>Auto-transformer</td>
</tr>
<tr>
<td>Ceremonies system</td>
<td>Composite compound</td>
<td>Heavy compound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction period</td>
<td>5½ years</td>
<td>5 years</td>
<td>5 years</td>
<td>10½ years</td>
</tr>
<tr>
<td>Opening date</td>
<td>October 1, 1964</td>
<td>March 16, 1972</td>
<td>March 10, 1975</td>
<td>June 23, 1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Omiya—Morioka)</td>
<td></td>
<td>November 15, 1982</td>
</tr>
<tr>
<td>Station's (ave. km)</td>
<td>16 (32.2)</td>
<td>17 (32.6)</td>
<td>14 (35.4)</td>
<td>9 (30.0)</td>
</tr>
</tbody>
</table>

Figure 5. Construction Standards
Figure 6. General Section

Figure 7. Standard Cross-Section of Tunnel
was developed, as shown in Figure 8. Conventional ballast tracks cause less noise and cost much more than conventional slab tracks. This new resilient tie track combined the noiseless ballast track and costless slab track. New Shinkansen lines, such as Tohoku and Joetsu, began to use this new track.19,20

*Devices for Reliable and Safety Operation Along Track

Some regions suffer heavy snowfall (more than 200 cm) and -20°C temperatures along the Joetsu line. The snow-strong system is indispensable for reliable operation in these areas. For the Tohoku line where snowfall is not so heavy, snow will generally be kept in the storage space provided under the rail of the slab-track section, as shown in Figure 10. The water-sprinkler snow-melting method has been adopted for a 47.5 mile section on the Joetsu line, and 1.8 miles on the Tohoku line. As shown in Figure 11, hot water is sprinkled over the snow as it falls on the track, and prevents it from accumulating. The snow-melting system works with an efficient water-heating and recirculating device in which the water sprinkled over the track is recollected, reheated, and sprinkled again.21,22

Since Japan is one of the most notable countries for earthquake risk, Shinkansen has a train-protection system from an earthquake, as shown in Figure 12. New equipment gives earlier notice about the occurrence of an earthquake in the Pacific earthquake zone. An immediate message is sent to reduce train speeds before the tremor reaches the Shinkansen lines. This message is conducted in a reliable double system through wires on the ground and the communication satellite.23

4. SERVICES

*Schedule and Capacity

The number of trains that start from Tokyo Station in the Osaka direction are seven "Hikari: Super Express" and four "Kodama: Express" per hour. The maximum number of trains operated per day is approximately 290 on this line.24

Figure 13 is a sample Tokaido and Sanyo Shinkansen schedule. Trains are operated at four minutes' minimum head. "Kodama: Express" stops at every station, but "Hikari: Super Express" skips lots of stations to meet a different transportation demand. The Tohoku and Joetsu lines have the same kind of schedule system as the Tokaido and Sanyo line. On the Tohoku line, the
Figure 8. Resilient Tie Track

- Viaduct joint or working joint
- Isolation
- Resilient tie
- Viaduct concrete
- Roadbed concrete
- Filling concrete
- Resin mortar
- Ballast

Sectional view of tie proper

Figure 9. Switching Point

- A-A
- B-B
- C-C
Figure 10. Sectional View of Snow-Storing Type Viaduct

Figure 11. Outline of Water Sprinkler Snow-Melting System

Figure 12. Earthquake Detection Along the Coast
Figure 13. Shinkansen Time Table 30

a) Tokaido Sanyo Line

<table>
<thead>
<tr>
<th>Train number</th>
<th>First Class with private compartment</th>
<th>Platform number</th>
<th>Tokyo</th>
<th>Shinkansen</th>
<th>Express "Hikari"</th>
<th>Super Express "Hikari"</th>
<th>Express "Kadomari"</th>
<th>double decker</th>
<th>Season, irregular Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td>111</td>
<td>112</td>
</tr>
<tr>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
</tr>
<tr>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
<td>132</td>
</tr>
</tbody>
</table>

Cafeteria during our buffet

Service day of Season, and irregular Service
super express train is called Yamabiko and the express is called Aoba. On the Joetsu line, the super express train is called Asahi and the express is called Toki.31

*Reliability

The number of train accidents and obstructions in transportation is 3-4 per one million kilometers of Shinkansen-running. The mean delay time per train is about two minutes, and 80 percent of the trains arrived at terminal stations on scheduled time. The main reason for delay is snow on the Tokaido Shinkansen in winter. Though the Tohoku and Joetsu lines were constructed through a heavy snow area, trains are rarely more delayed than on the Tokaido line. New counter-measures against snow damage work very well on these new lines.32

*Competition with Airline Service

Highways in Japan are subject to toll and have insufficient capacity. In addition, fuel costs are about three times as expensive as in the U.S.A. Because of this, people in Japan don't use cars for inter-regional transportation. Though air service competes with Shinkansen service, the Shinkansen shows a large share under 438 miles distance. Table 4 shows most people choose Shinkansen between Osaka and Tokyo (346mi). The reasons are as follows:

1. More operation services than air
2. Cheaper transportation fare air
3. Shinkansen stations are located in the downtown of each city
4. Reliability of schedule
5. Safety operation

5. ECONOMIC RESULTS

*Construction Cost

The construction cost of the Shinkansen is not the same among the different Shinkansen lines. Generally speaking, older lines are cheaper and newer lines are more expensive.33
Table 4. Comparison of Passenger Number: Shinkansen and Airplane (from Tokyo)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Time</th>
<th>Freq.(1)</th>
<th>Price(2)</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagoya</td>
<td>Shinkansen</td>
<td>1 hr. 48 min.</td>
<td>100(3)</td>
<td>10,380</td>
</tr>
<tr>
<td></td>
<td>Airplane</td>
<td>1 hr.(4)</td>
<td>1(5)</td>
<td>11,600</td>
</tr>
<tr>
<td>Osaka</td>
<td>Shinkansen</td>
<td>2 hr. 44 min.</td>
<td>100(3)</td>
<td>13,480</td>
</tr>
<tr>
<td></td>
<td>Airplane</td>
<td>1 hr.(4)</td>
<td>15</td>
<td>14,600</td>
</tr>
<tr>
<td>Hakata</td>
<td>Shinkansen</td>
<td>5 hr. 57 min.</td>
<td>23(3)</td>
<td>21,300</td>
</tr>
<tr>
<td></td>
<td>Airplane</td>
<td>1 hr. 40 min.</td>
<td>24</td>
<td>25,350</td>
</tr>
</tbody>
</table>

(1) Per one day.
(2) Full price including seat reservation fare (yen).
(3) Only super express "Hikari," excluding express "Kodama."
(4) It takes a longer time than Shinkansen if you include access time to the airport and waiting time at the airport.
(5) Tokyo has two airports. One is the domestic "Haneda" airport, the other is the international "Narita" airport. This one service for "Nagoya" is not from "Haneda" but from "Narita." Air service between "Haneda" and "Nagoya" was abandoned after the opening of the Shinkansen.
Total Construction Cost (billion $)

Tokaido (346 miles): 0.92 (1964 price: $1=¥360)

Sanyo (389 miles): 2.95 (1975 price: $1=¥308)

Tohoku (335 miles): 11.02 (1985 price: $1=¥254)

There are two reasons why the Shinkansen system is more expensive compared with other high-speed rail systems. First, the Japanese land price is the highest in the world. Second, the Japanese topography requires many kinds of expensive infrastructure such as tunnels and bridges for straight railway. Details of expense and of the infrastructure proportion in the case of the Sanyo Shinkansen between Shinosaka and Okayama (103mi) are as follows:

Proportion of each expense by total cost

- Infrastructure: 58.3%
- Land Price: 25.8%
- Electric Equipment: 10.9%
- Track & Rail: 5.1%

Proportion of each infrastructure by total line length

- Cut: 2%
- Bank: 5%
- Viaduct: 49%
- Bridge: 9%
- Tunnel: 35%

- Total length: 100% (103mi)

In the case of the U.S., the average land price is about 1/50 of Japan, and the simple topography such as that found in the Central Valley is suitable for a most inexpensive ground-type track construction. On this point, construction of a Shinkansen system in the California corridor would cost less than 1/3 of the cost in Japan.
Expenditure & Revenue

The Tokaido and Sanyo Shinkansen have shown a large profit, as demonstrated in Table 5. Though the Tohoku and Joetsu lines are in deficit finance, they are currently improving due to an increase of passengers.35

6. ENVIRONMENT

Noise Problem

The construction of the Tokaido Shinkansen was decided in 1959 and the line had to be completed by 1964 (the year of the Tokyo Olympics). It was a very short period to estimate the environmental impact. After the opening of the Tokaido Shinkansen, a noise problem in the Nagoya area was pointed out. In 1975, environmental criteria were decided as follows:

- Under 70 hon: Residential area, outside house
- Under 75 hon: Commercial area, outside house

The Nagoya noise problem provided a good lesson for the Tohoku and Joetsu lines. These new lines were improved as follows:

- 20m wide environmental zone (both sides of right-of-way)
- Noise barrier
- Improvement of track ground
- Improvement of track basement
- Speed decreased through densely inhabited districts36

Energy Consumption

Shinkansen consumes 30Wh electricity per kilometer per passenger. Compared to other transportation facilities, Shinkansen is three times as efficient as the Maglev, and six times as efficient as air service.37

7. FUTURE EXTENSION

The success of the Tokaido Shinkansen encouraged the establishment of a "Shinkansen Reorganization Law." Based on this law, a plan to construct five lines was decided in 1973, as shown in Figure 14. But these plans were not executed. Not only was the total estimated
Table 5. Expenditure and Revenue of Shinkansen (billion yen, 1985)

<table>
<thead>
<tr>
<th>Line</th>
<th>Expenditure</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokaidou</td>
<td>286</td>
<td>676</td>
</tr>
<tr>
<td>Sanyo</td>
<td>207</td>
<td>284</td>
</tr>
<tr>
<td>Tohoku</td>
<td>367</td>
<td>208</td>
</tr>
<tr>
<td>Joetsu</td>
<td>159</td>
<td>82</td>
</tr>
</tbody>
</table>

Table 6. Priority for Starting Construction Works

1) i) Hokuriku Shinkansen Line section between Takasaki and Karuizawa in the Plan of the Ministry of Transport. As to the section between Karuizawa and Nagano, a decision will be made within three years considering the issues such as the site of the Winter Olympics in 1992.

 ii) Hokuriku Shinkansen Line section between Kanazawa and Takaoka in the Ministry of Transport Plan.

2) Tohoku Shinkansen Plan of the Ministry of Transport.

3) Kyushu Shinkansen Plan of the Ministry of Transport.

4) Hokuriku Shinkansen Line section between Uozu and Itoigawa in the plan of Ministry of Transport.
Figure 14. Shinkansen Reorganizing Plan

Application for approval of construction work execution plan (between Takasaki and Kanazawa) was accepted, December 1985

Construction work execution plan (between Takasaki and Kanazawa) is approved, June 1989

Application for approval of construction work execution plan was accepted, December 1985

Legend:
- Operation route
- Route for Reorganizing Plan (construction not started)
- Route for Reorganizing Plan (under construction route)
- Basic Plan Route

Kyushu Shinkansen (Nagasaki)

Fukuoka
Kumamoto

Osaka
Kanazawa
Fukui

Hokuriku Shinkansen
approx. 564 km

Nagano
Kanazawa
Takasaki

Nagoya
Tokyo

Hokkaido Shinkansen
approx. 282 km

Application for approval of construction work execution plan was accepted, August 1988

Application for approval of construction work execution plan was accepted, December 1985
expenditure so large (more than 5 trillion yen), but also the oil shock stopped these projects. After JNR privatized and divided into several groups, the frozen project was revised, as shown in Figure 15. To reduce construction cost, the following changes will be required on new lines:

1. Standard Gauge New Line
2. Through Service Line with Shinkansen
3. New Line to Shinkansen Standard

8. SUMMARY

The Shinkansen system is one of the most successful projects in Japan. Though this paper explains many details about Shinkansen, the important reasons for the success are the following two points:

1. Shinkansen is a very punctual system.

 People, especially business persons, make much of punctuality. They choose a 156 mph train which is operated on time instead of an unpunctual 250 mph train. The Shinkansen system has a greater punctuality record than either airplanes or autos, and can get a very large share of business trips.

2. Shinkansen service is very frequent.

 Whenever you go to the stations, you can take a Shinkansen train without waiting. You need not reserve a seat beforehand. In addition, you can choose Super Express for long trips, and express for short trips, and you can easily combine them.

 Shinkansen is a dedicated system, and that enables these two features. The construction cost of Shinkansen is not so low, but it proves to be a most effective system under large travel demands.
Figure 15. Diagrams of the Plan of the Ministry of Transport
NOTES

9Ibid., 7.
10Ibid., 6.
14Ibid., 8.
16Ibid., 15.
17Ibid., 15.
18Ibid., 15.
22Ibid., 15.
23Two New Shinkansen Lines ...," 3.
24Ibid., 2.
25Ibid., 15.
26Ibid., 16.
27Ibid., 17.
28Ibid., 18.
29Ibid., 19.
31Ibid., 10.
32Ibid., 3.

38 JNR Inspection Report, 35.

39 Mizoguchi, 2.

40 Ibid., 2.

41 Ibid., 2.

42 Ibid., 2.