Title
The erythropoietin receptor lends a Friendly hand

Permalink
https://escholarship.org/uc/item/5tt4w6tx

Journal
Blood, 107(1)

ISSN
0006-4971 1528-0020

Author
Van Etten, R. A

Publication Date
2006

DOI
10.1182/blood-2005-10-4054

Peer reviewed
and other developments like modifications to prolong half-life are more likely to attract investment and effort. Meanwhile, clinicians may wonder whether there is a case for treating PUPs with lower purity plasma-derived factor VIII after all.

REFERENCES

Comment on Zhang et al, page 73

The erythropoietin receptor lends a Friendly hand

Richard A. Van Etten **Tufts-New England Medical Center**

An elegant genetic study clarifies the role of the erythropoietin receptor in the pathogenesis of erythroblastosis and polycythemia induced by Friend virus.

In 1957, Charlotte Friend described erythroblastosis and polycythemia in mice using a cell-free filtrate. The retrovirus and disease that bear her name have proven to be a powerful model system for studying erythropoiesis, erythropoietin signaling, leukemogenesis, and retroviral pathogenesis. Friend virus, a complex of replication-competent helper virus and replication-defective spleen focus-forming virus (SFFV), induces disease in susceptible mice in 2 distinct stages. The initial premalignant phase is characterized by splenomegaly due to polyclonal expansion of nontransformed erythroblasts. Two different variants of SFFV (SFFVP and SFFVA) cause either polycythemia or anemia, respectively, during this period. Subsequently, clonal erythroleukemia emerges with loss of p53 and frequent activation of the Ets family transcription factor PU.1 through proviral insertion. The genetic basis of the first stage of Friend disease was clarified by 2 important observations. The first was the discovery by Li, D’Andrea, and coworkers that the envelope glycoprotein of SFFVP, gp55p, interacted with and activated the erythropoietin receptor (EpoR). The related envelope protein from SFFVA does not activate EpoR, although both forms of SFFV can induce erythroid burst-forming units (BFU-Es) in the absence of Epo. The second finding was the positional cloning by Ney and Correll’s group of the Friend disease susceptibility locus Puv1, a mouse gene that encodes a naturally occurring truncated form of the receptor tyrosine kinase STK (sf-STK). Mice lacking sf-STK do not develop either erythroblastosis or erythroleukemia after Friend virus infection.

How these 3 transmembrane proteins might function in erythroid progenitors is a mystery. In one model, gp55 mediates a functional interaction between EpoR and sf-STK, analogous to that demonstrated for EpoR and another receptor tyrosine kinase, c-Kit. In the current issue of *Blood*, however, Zhang and colleagues use a genetic approach to demonstrate that gp55 must interact separately with Epo-R and sf-STK. Balb/c mice (sensitive, expressing sf-STK) engineered to express a murine EpoR mutant lacking cytoplasmic tyrosines required for Stat5 activation were nonetheless susceptible to Friend virus–induced erythroblastosis and splenomegaly, as were mice lacking both Stat5a and 3b. Friend virus induced small splenic foci of erythroblasts but not overt erythroblastosis after infection of Balb/c fetal liver cells lacking EpoR, whereas erythroblastosis and splenomegaly were restored by transgenic expression of human EpoR, which is not activated by gp55, at least in cell lines. By contrast, polycythemia induced by SFFVP did require EpoR and Stat5. These studies, together with recent observations that gp55 can also bind and activate sf-STK, suggest a model where gp55 from either SFFV strain can activate sf-STK and induce erythroblastosis, whereas gp55p causes Epo-independent terminal erythroid differentiation and polycythemia through EpoR and Stat5 (see figure). These results do not exclude possible indirect interactions between sf-STK and EpoR (for example, through JAK2). The reported resistance of human EpoR to activation by gp55p...
also deserves a second look, particularly in primary cells. Surprises will no doubt continue to emerge from the rich pathobiology of Friend virus.

REFERENCES

IMMUNOBIOLOGY

Comment on Zimring et al, page 187

Transfusion tickles T cells through cross-priming

James D. Gorham Dartmouth Medical School

A mouse model is used to show that RBC surface proteins recognized as foreign can trigger recipient CD8^+ T-cell responses even in the absence of donor leukocytes.

Blood transfusion is not an immunologically inert event. In a relatively short time frame, the recipient is exposed to a large quantity of polymorphic antigens, and antigen-specific immune responses can and do develop. The most well-recognized of these is the development of alloantibodies against polymorphic epitopes located on red blood cell (RBC) surface proteins. Alloantibodies are responsible for delayed hemolytic transfusion reactions, but when alloantibodies are detected, clinical problems are, for the most part, fairly easily avoided through the selection of appropriate, cross-match compatible units.

A less well appreciated immunologic effect of blood transfusion is the development of cell-mediated immunity and the induction of CD8^+ cytotoxic T lymphocytes (CTLs) with specificity against polymorphic peptides derived from allelic variants of normal proteins, also known as minor histocompatibility antigens (MiHAs). This type of immune response may contribute to the unusually high rates of rejection of allogeneic bone marrow observed among patients with sickle cell disease who undergo HLA-matched bone marrow transplantation (BMT). Such patients typically have received previously numerous blood transfusions, and may therefore have developed CTLs with specificity to MiHAs.

The mechanisms involved in the development of anti-MiHA CTLs following transfusion are not well understood, but it has been generally assumed that donor white cells are important. This belief stems in part from the demonstrated beneficial effects of leukoreduction in preventing humoral alloimmune responses in other transfusion situations, as well as from the ameliorating effects of leukoreduction in transfusion-associated BMT graft rejection in experimental dog models. The current study by Zimring and colleagues challenges the assumption that a CD8^+ T-cell response to RBC-associated MiHAs cannot occur in the absence of donor leukocytes. The authors use a well-characterized mouse model in which both the antigen and the responding T cells are known in advance. The authors prepared highly leukoreduced mouse RBCs and then chemically modified them to express on their cell surface a xenoreagent—chick ovalbumin (OVA). These modified RBCs (now expressing a “MiHA” in the form of the cross-linked OVA) were transfused into mice that had been pre-loaded with CD8^+ T cells capable of recognizing a peptide from OVA. In response, this T-cell population greatly expanded. The transfusion of RBCs modified with an irrelevant
The erythropoietin receptor lends a Friendly hand

Richard A. Van Etten

Updated information and services can be found at:
http://www.bloodjournal.org/content/107/1/5.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml