Title
Production and Investigation of K isomers in 256Rf

Permalink
https://escholarship.org/uc/item/5vh3z1kp

Authors
Dragojevic, I.
Jeppesen, H.B.
Clark, R.M.
et al.

Publication Date
2008-04-04
Production and Investigation of K isomers in 256Rf

I. Dragojevića,b, H.B. Jeppesena, R.M. Clarka, K.E. Gregoricha, M.N. Alia,b, J.M. Allmondd, C.W. Beausangd, D.L. Bleuela,c, P.A. Ellisona,b, P. Fallona, M.A. Garcíaa,b, J.M. Gatesa,b, J.P. Greenee, S. Grosa, I.Y. Leea, A.O. Macchiavellia, S.L. Nelsona,b, H. Nitschea,b, L. Stavsetraa, M. Wiedekinga

Affiliations:
aNuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
bDepartment of Chemistry, University of California, Berkeley, CA 94720-1460, USA
cLawrence Livermore National Laboratory, Livermore, CA 94551
dUniversity of Richmond, Richmond, VA 23173
ePhysics Division, Argonne National Laboratory, Argonne, IL 60439

K-isomers occur in deformed, axially-symmetric nuclei, (where K is the projection of the total angular momentum on the symmetry axis). K-isomers have been observed in A~130 and A~180 regions. High-K states are also predicted to occur near A=250 in the deformed trans-fermium region. So far there has been relatively little structure information on nuclei in this region of the chart of nuclides due to small production cross sections. However, recent experiments have studied the decay of high-K isomers in 252,254No yielding important information on these multi-quasiparticle states. I will describe our recent identification of high-K isomeric states in 256Rf. Nuclei of interest were produced via the 208Pb(50Ti, 2n)256Rf reaction at the Lawrence Berkeley National Laboratory’s 88-Inch Cyclotron and the decay was studied at the focal plane of the Berkeley Gas-filled Separator (BGS).

Acknowledgement:
This work was supported by the Director, Office of Science, Nuclear Physics, U.S. Department of Energy under contract number DE-AC02-05CH11231.