Title: Structural Characterization of the EtOH-TiCl4-MgCl2 Ziegler-Natta Precatalyst

Permalink: https://escholarship.org/uc/item/5vz2s4z0

Journal: JOURNAL OF PHYSICAL CHEMISTRY C, 120(32)

ISSN: 1932-7447

Authors: D'Anna, V; Norsic, S; Gajan, D; et al.

Publication Date: 2016-08-18

DOI: 10.1021/acs.jpcc.6b05313

Peer reviewed
Structural Characterization of the
EtOH–TiCl₄–MgCl₂ Ziegler-Natta Pre-catalyst

V. D’Anna,† S. Norsic,‡ D. Gajan,¶ K. Sanders,¶ A. J. Pell,¶ A. Lesage,¶ V. Monteil,‡ C. Copéret,§ G. Pintacuda,¶ and P. Sautet*,†∥

CNRS, ENS Lyon, Université Lyon 1, Laboratory of Chemistry, 46, Allée d’Italie, 69364 Lyon 07, France., Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS, Chimie Catalyse Polymères et Procédés (C2P2), LCPP team, 43 Bd du 11 novembre 1918, 69616 Villeurbanne, France., Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100 Villeurbanne, France., Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 15, 8093 Zürich, Switzerland., and Department of Chemical and Biomolecular engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States.

E-mail: Philippe.Sautet@ens-lyon.fr

Phone: (1)310-825-8485.

*To whom correspondence should be addressed
†ENS-Lyon
‡uni-lyon-pol
¶uni-lyon
§ETH-Zurich
∥UCLA
Abstract

The Ziegler-Natta polymerization is one major example of application of catalysis in industry. Since the first discovery of the Ziegler and Natta, several modifications of the catalyst have been developed, in order to improve its performances. Nowadays, a typical Ziegler-Natta catalyst for polyethylene synthesis consists of a precatalyst, composed by TiCl$_4$ supported on MgCl$_2$ in presence of a Lewis base, activated by organoaluminium.

The atomic-scale characterization of the Ziegler-Natta catalyst is crucial for further improvement of the catalyst. Here, the precatalyst TiCl$_4$-MgCl$_2$ with EtOH as internal Lewis base is characterized combining solid-state NMR spectroscopy and periodic density functional theory calculations. From total energy and NMR spectra, 8 surface species were proposed showing EtO$^-$ ligands on the Ti and EtOH/EtO$^-$ on the surface Mg species. These species lead to a complete interpretation of the NMR 2D spectra. Hence a detailed molecular scale description of the pre-catalyst was obtained.

Introduction

The discovery of the olefin polymerization catalysts achieved by Ziegler and Natta$^{1-5}$ in the 1950th was a worldwide breakthrough. This discovery has allowed the introduction of plastics in everyday life. Indeed polyolefins such as polyethylene and polypropylene represent in 2015 almost half of the 300 million tons of global plastics production in 2015.6 Catalysts based on the Ziegler-Natta (ZN) concept are still massively used in the industrial production of plastics, and this puts the ZN catalysts among the most advanced industrial applications of catalysis.7,8

Since the discoveries of Ziegler and Natta, numerous studies were devoted to the improvement of the activity (for ethylene and propylene homo- and co-polymerizations) and the selectivity (in particular the stereoselective polymerization of propylene) of the catalysts, leading to the modern ZN-catalysts.
The last generations of heterogeneous ZN catalytic systems are typically based on titanium tetrachloride, TiCl$_4$, supported on magnesium dichloride in presence of Lewis bases (monodentate such as e.g. alcohols or ethers and/or bidentate, referred as “internal” Lewis base). The thus-generated ZN precatalysts are subsequently activated by alkylaluminium. In addition, a bidentate base, so-called external Lewis base, is added in the specific case of stereoselective polymerization of propylene.9

The choice of MgCl$_2$ as support is a consequence of its structural similarities with that of the “violet” TiCl$_3$.10,11 Among the possible terminations of MgCl$_2$, the (110) was found to preferentially interact with TiCl$_4$. $^{12-15}$ In the preparation of highly active ZN precatalysts for polyethylene synthesis one of the key steps is the introduction of a monodentate Lewis base, typically an alcohol$^{16-21}$ or an ether,$^{22-28}$ during the preparation of MgCl$_2$ and its contact with TiCl$_4$.

A considerable effort has been devoted to the characterization of the catalyst from a molecular point of view; this is an important task for both fundamental interest and for the possibility to gain some insights that could be very valuable for further improvements of the catalyst. For this purpose, several experimental$^{29-35}$ and computational$^{13,15,36-46}$ studies were performed. Many features of the catalyst, as the structure of the precatalyst, the activation process, the oxidation state(s) of the active titanium species during the polymerization process were investigated; notwithstanding, there are still several open questions.

It was recently shown, by combining solid state NMR and DFT calculations, that THF used as internal Lewis basis was a non-innocent ligand and underwent reaction with TiCl$_4$ upon adsorption of the latter on the MgCl$_2$-THF$_{1.5}$ support, yielding surface alkoxide species.22 Here we investigate the fate of EtOH in MgCl$_2$-EtOH$_{1.5}$ upon the reaction of TiCl$_4$ with the latter support by combining solid state NMR and DFT calculations.
Experimental

Synthesis

All chemicals were handled using standard Schlenk procedures under argon atmosphere. Solvents were distilled from drying agents. Pure triethylaluminium (TEA) was purchased from Wacko chemical. Ethylene (purity 99.95%) was purchased from Air Liquide and used without any further purification.

Titanium, Magnesium, Carbon, Hydrogen contents of precatalysts were determined by elemental analysis, performed at the CNRS SCA (Service Central d’Analyse) laboratory in Solaize (France).

Molecular weights of polyethylene samples were determined by size exclusion chromatography (SEC) using a Viscotek Malvern HT-GPC module 350A equipped with three mixed bed columns (300×7.8 mm from Malvern Instrument) and a guard column (75×7.5 mm). Dry polymer samples were dissolved at 150° C in 1,2,4-trichlorobenzene (stabilized with 2,6-di(tert-butyl)-4-methylphenol), at a 3 mg mL⁻¹ concentration. The system was calibrated with polyethylene standards. Differential scanning calorimetry (DSC) was performed on a Mettler Toledo DSC1 at a heating rate of 5 K/min. Two successive heating and cooling of the samples were performed. We have considered data (Tm values) obtained during the second heats.

Synthesis of pre-catalysts

The Ziegler-Natta pre-catalyst (MgCl₂/EtOH/TiCl₄) was prepared as follows: first MgCl₂ was stirred in boiling EtOH or 1³C-labeled EtOH (1 g of MgCl₂ for 10 mL of EtOH) for 4 h. After cooling down the suspension, heptane was added dropwise. After decantation, the filtrate was removed and the remaining solid was washed 4 times with heptane. A white
powder of $\text{MgCl}_2(\text{EtOH})_x$ with $x \approx 2$ was obtained. The compound was then treated with an excess of liquid TiCl_4 (1 g of $\text{MgCl}_2(\text{EtOH})_x$ for 10 mL of TiCl_4) at 90° C for 2 h. Toluene was added dropwise, and the mixture cooled down. After decantation, the solid was washed 3 times with hot toluene and 4 times with heptane yielding a yellow powder.

Standard polymerization procedure of ethylene

Ethylene polymerizations were carried out in a 1 L stainless steel autoclave (equipped with safety valves, stirrer, oven) from Sotelem Co. Before each polymerization, the reactor was washed using a millimolar solution of TEA in heptane. A suspension of few milligrams of precatalyst was then prepared in 250 mL of a 3 mM solution of TEA in heptane in a Schlenk tube under argon. The mixture was introduced through cannula into the cooled reactor. Then 1 bar of H_2 was introduced with 7 bars of ethylene. The mixture was heated at 80° C under stirring (500 rpm). During the polymerization the total pressure was maintained constant. After 1 hour of polymerization the reactor was slowly cooled down and degassed. The slurry of polymer was then filtrated, washed with ethanol and dried under vacuum at 90° C.

NMR

The solid-state NMR spectra were acquired on a Bruker Avance III 800 spectrometer operating at a magnetic field of 18.8 T (Larmor frequencies of 800.146 MHz for ^1H and 201.205 MHz for ^{13}C), using either a 3.2 mm Bruker HCN standard-bore magic-angle-spinning (MAS) probe or a 1.3 mm Bruker HCN standard-bore MAS probe. The one-dimensional (1D) ^{13}C cross-polarization (CP)-MAS spectrum was acquired using the 3.2 mm probe at 18 kHz MAS, with a 1 ms CP contact time using a constant amplitude spin-lock frequency of 50 kHz on ^{13}C, and a linear ramp from 53.5 kHz to 107 kHz on ^1H. The 90-degree ^1H excitation pulse and the SPINAL-64 decoupling were calibrated at 96 kHz of radio-frequency (RF) field amplitude. In total 512 scans were acquired using a recycle delay.
of 2 seconds, resulting in a total experiment time of 17.5 minutes.

The 1D 1H MAS spectrum was acquired with a spin-echo experiment at 60 kHz MAS using a 1.3 mm probe. The 90° and 180° pulses were calibrated at 100 kHz of RF field amplitude and an echo-shift period of six rotor periods (100 µs) was used. The resulting free-induction decay (FID) was collected starting at the peak of the shifted echo. A total of 128 scans were acquired using a 10 s recycle delay, giving a total experiment time of 21.5 minutes.

The 2D magic-angle-turning (MAT) experiment was achieved by first cross polarizing from protons using identical conditions as the CP-MAS experiment. The MAT recoupling time was 20 rotor periods (4 ms) and 150 increments were acquired using the echo/anti-echo scheme, using 180° refocusing pulses of 52.6 kHz of RF field amplitude. A recycle delay of 2 s was employed to collect 384 scans per increment, giving a total experiment time of two days, 17 hours, and 17 minutes. The individual CSA sideband patterns were analyzed using the dmfit software.

The 1H-1H double quantum (DQ)-single quantum (SQ) correlation spectrum was acquired using the back-to-back (BABA) sequence at 60 kHz MAS. The double-quantum creation and reconversion recoupling times were both one rotor period (16.67 µs). A total of 128 rotor-synchronized increments in the indirect dimension were acquired using the States-TPPI acquisition mode, for a total acquisition time of 1.067 ms in the indirect double quantum dimension. A 2-ms z-filter was applied immediately prior to acquisition and 256 scans were acquired per increment using a 2 s recycle delay, giving a total experiment time of 18.5 hours.

The 1H-13C heteronuclear correlation (HETCOR) spectrum was acquired using identical CP RF field amplitudes as the CP-MAS spectrum, but with a shorter contact time of 250 µs in order to minimize long-range correlations. Homonuclear decoupling in the 1H indirect dimension was achieved using the eDUMBO-122 sequence at 100 kHz field amplitude and a cycle time of 32 µs. The direct dimension was acquired under SPINAL-64 heteronuclear 1H decoupling using a 96 kHz RF field amplitude. In total 96 increments were acquired with
384 scans per increment using the States-Haberkorn-Ruben acquisition mode, resulting in an experiment time of 20.5 hours.

Computational details

The periodic calculations were performed at the Density Functional Theory (DFT) level, using the VASP code. The General Gradient Approximation (GGA) was chosen with the PBE functional, the atomic cores were described using the Projector-Augmented Wave (PAW) method. A plane waves basis set with an kinetic energy cutoff of 400 eV was used. The van der Waals interactions were taken into account with the Grimme-D2 method. The MgCl$_2$ surface was modeled by the (110) termination, since it yields much more favorable adsorption energy of TiCl$_4$ compared to the (001) and (104) surfaces. The MgCl$_2$ solid is formed by the repetition of Cl-Mg-Cl two-dimensional sheets, bound by van der Waals forces. These sheets are perpendicular to the (110) surface and their terminations form one-dimensional rows (Figure 1). Two model systems were exploited to reproduce the reaction environment. The first one, denoted as extended, consists of a 3 × 3 supercell of the (110) surface of MgCl$_2$, hence including 3 rows, each containing 3 surface Mg atoms, where a unit of TiCl$_4$ is anchored. It is composed by ten layers of MgCl$_2$ with nine Mg atoms per layer. During the geometrical optimizations, the bottom five layers were kept frozen in the geometry of the bulk, while the others and the adsorbed species were relaxed. A large portion of vacuum (∼ 20 Å) was used, in order to minimize the vertical interactions between the cells, since they are physical meaningless. In this regard, the dipolar correction along the C axis was also applied. The optimization of this system was performed at the Gamma point, which is sufficient considering the large unit cell.

The second model system is shown in the Figure S1 of the Supporting Information and will be called compact in the following. It contains the same number of frozen and relaxed layers and the same vacuum of the extended one. In the compact system only one MgCl$_2$ sheet is
considered with a 1×3 unit cell, and hence it is 3 times smaller than the extended model. There are 3 Mg per surface plane instead of 9 previously. Each vertical layer contains one TiCl$_4$ unit; that leads to an increase of the TiCl$_4$ coverage, compared with the extended model system. The compact cell was optimized using a $2 \times 1 \times 1$ Monkorst-Pack grid. The same cells without the TiCl$_4$ unit were used to represent the bare MgCl$_2$ surface. All the molecular calculations were performed inserting the species in a $20 \times 20 \times 20$ Å3 box. Temperature and entropy effects are not included. While the temperature will affect the values of the free energy of formation of the surface species, it should not significantly affect the relative energy values between the various considered surface species. Indeed the species are immobilized on the surface, so that translational and rotational contributions are zero. The main contribution will arise from the free reactants, affecting in an identical way all the free energy of formation for the surface species.

The NMR calculations were performed using the VASP package. For both model systems, the number of layers of the cell were reduced from ten to four, while the vacuum thickness was lowered to ~ 14 Å. All the chemical shifts values of 13C and 1H were referred to the ones of TMS. TMS was considered in isolated form; the optimization and NMR calculations were performed on a TMS molecule inside a $20 \times 20 \times 20$ Å3 box.

Results and discussion

Experimental investigations

Elemental analysis of ZN-precatalyst obtained from the synthesis shows the presence of 7.5 %wt of Ti, 16.7 %wt of Mg and 13.5 %wt of EtOH, thus giving an average molecular formula MgCl$_2$(EtOH)$_{0.42}$(TiCl$_4$)$_{0.23}$ and a ratio EtOH/Ti close to 2. Upon activation with triethylaluminium (TEA) (Al/Ti \approx 100), the ZN pre-catalyst provides a highly active catalyst for homopolymerization of ethylene under standard conditions (7 bars of ethylene and 1 bar of H$_2$ at 80° C) with an activity of 24700 gPE·gcat$^{-1}$·h$^{-1}$. The
polyethylene exhibits expected properties with such type of catalysts: $\text{Mn}=35650 \text{ g mol}^{-1}$, $\text{PDI}=7.4$ and a melting temperature of 135.3°C.

The structure of the pre-catalyst was then investigated by solid-state NMR spectroscopy through selective 13C-labeling strategies. Figure 2 shows a set of NMR experiments recorded on EtOH-TiCl$_4$-MgCl$_2$ prepared from 1-13C labeled ethanol. In the 1D 13C spectrum (Figure 2a), the most intense peaks between 60-100 ppm are assigned to resonances arising from the 13C-labelled CH$_2$ groups in different environments. Four distinct resonances are observed at chemical shifts of 91.1 (A), 85.0 (B), 69.1 (C) and 60.1 (D) ppm for these methylene carbons. For each of these 4 isotropic resonances, the parameters of the chemical shift
Figure 2: Experimental solid-state MAS NMR spectra of the MgCl$_2$-CH$_3$-13CH$_2$OH-TiCl$_4$ Ziegler-Natta precatalyst measured at an external magnetic field strength of 18.8 T (nominal 1H Larmor frequency of 800 MHz). Parts (a) and (b) are the one-dimensional MAS spectra of 13C and 1H, respectively. The MAT spectrum shown in (c) displays the sideband pattern for each carbon environment, resolved isotropically; a zoom on the CSA of the four signals is shown in the insert. The BABA double quantum 1H-1H correlation is shown in (d). The blue and red lines indicate the two correlations found. The 1H-13C HETCOR is displayed in (e); the peaks are named with the letters A-D and X-Z.

Anisotropy (CSA) tensor were extracted from a CP-MAT experiment (Figure 2c and Table 1). The 1H spectrum of MgCl$_2$(CH$_3$CH$_2$)$_{0.42}$(TiCl$_4$)$_{0.23}$ shown in Figure 2b displays two

Table 1: Experimental 13C chemical shift (ppm), Span (ppm) and Skew of the CH$_2$ groups. The same labels used in the HETCOR spectrum of Figure 2 (c) are used to identify the 13C chemical shifts.

<table>
<thead>
<tr>
<th>Label (Figure 2 c)</th>
<th>δ (ppm)</th>
<th>Span (ppm)</th>
<th>Skew</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>91.1</td>
<td>100.4</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>85.0</td>
<td>89.6</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>69.1</td>
<td>69.8</td>
<td>0.64</td>
</tr>
<tr>
<td>D</td>
<td>60.1</td>
<td>60.4</td>
<td>0.69</td>
</tr>
</tbody>
</table>
main broad resonances centered at around 5 and 2 ppm, and corresponding respectively to the \(\text{CH}_2 \) and \(\text{CH}_3 \) groups of the pre-catalyst. The 2D DQ-SQ \(^1\text{H}\)\(^1\text{H}\) correlation spectrum shown in Figure 2d allows a more detailed analysis of these \(^1\text{H}\) chemical shifts. In particular, the autocorrelation peaks along the diagonal reveal two main broad methylene resonances at around 5.2 and 4.2 ppm, which correlate with distinct \(\text{CH}_3 \) resonances, at 1.7 ppm (red lines) and at 1.4 ppm (blue lines), respectively.

The 2D \(^1\text{H}, ^{13}\text{C}\) HETCOR in Figure 2e shows four intense C/H correlations, labelled A, B, C and D in the Figure, at 91.1/5.1 ppm, 85.0/5.1 ppm, 69.1/4.4 ppm and 60.1/4.0 ppm, respectively, corresponding to the four distinct \(\text{CH}_2 \) groups. The use of a short CP contact time (250 \(\mu \)s) allows for the observation of mainly one-bond correlations. While the peaks C and D fall in the range of standard ethoxy derivatives, the downfield shift and the larger CSA observed for peaks A and B are more consistent with ethoxy groups bound to a highly electrophilic transition metal, like Ti.\(^{22,62}\) The \(^1\text{H}\) chemical shifts of these correlation peaks are centered at around 5.1 ppm (for peaks A and B) and at around 4.2 ppm (for peaks C and D) in agreement with what was observed in the proton DQ-SQ spectra. In addition to these intense correlations, three additional correlations, named X, Y and Z in Figure 2e, are also observed at 91.1/1.5 ppm, 20.0/1.5 ppm and 2.0/5.1 ppm, respectively. X is a long-range correlation between the methyl protons and the methylene carbons; Y is a one-bond correlation resulting from the natural abundance \(\text{CH}_3 \) groups, and Z is a long-range correlation between the methyl carbons at natural abundance and the methylene protons.

The observation of the four distinct methylene resonances and thereby of four different \(-\text{OCH}_2\text{-CH}_3\) moieties indicates that upon addition of \(\text{TiCl}_4 \) to the \(\text{MgCl}_2/\text{EtOH} \) support \(\text{EtOH} \) is converted to four different entities. We therefore investigated the potential surface species by DFT calculation, considering first the adsorption of \(\text{EtOH} \) on \(\text{TiCl}_4/\text{MgCl}_2 \) with various coverage levels. Following, the possibilities of alcoholsysis of one M-Cl (M= Mg, Ti) bond were described. Finally, the potential double alcoholsysis reaction on one metal was
analyzed. In the following, these three different types of interactions of the EtOH ligand will be discussed both from the total energy aspect and from the simulated 13C and 1H chemical shifts.

Adsorption of EtOH molecules on TiCl$_4$–MgCl$_2$

At first the interaction of one EtOH molecule with the bare MgCl$_2$ surface was analyzed (EtOH-bareMgCl$_2$) using the *extended* cell. If one expresses the coverage, θ_{EtOH}, as monolayer (ML= number of EtOH molecules per surface Mg atom), this case corresponds to $\theta_{\text{EtOH}} = 1/9 \text{ ML}$. The optimized structure shows that EtOH binds with the O atom interacting with a surface Mg atom (Mg-O distance of 2.05 Å) in a Lewis base-Lewis acid type interaction with an adsorption energy of -118 kJ/mol, according to Equation 1 (with surface$=$ MgCl$_2$).

$$\text{EtOH}_{\text{gas}} + \text{surface} \rightarrow \text{EtOH} - \text{surface} \quad (1)$$

Upon adsorption of TiCl$_4$ on MgCl$_2$, the surface Mg atoms are not equivalent anymore. Consequently, the study of the interaction of EtOH with surface Mg was expanded by considering three different Mg interaction sites, indicated as Mg1, Mg2 and Mg3 in the part III of Figure 1. In particular, Mg1, Mg2 and Mg3 represent a Mg surface atom close to TiCl$_4$, a Mg atom “far” from the TiCl$_4$ but belonging to the same row, and a Mg atom of a row different from the one of TiCl$_4$, respectively. In the following, the structures representing the interaction between the EtOH and the different Mg atoms will be referred as EtOH-Mg1, EtOH-Mg2 and EtOH-Mg3. In order to complete the description of the system, also the direct interaction between EtOH and TiCl$_4$ (EtOH-TiCl$_4$) was considered. The obtained structures are shown in Figure S2 of the Supporting information.

Analogously to the case of the EtOH-bare-MgCl$_2$ system, the adsorption energy ΔE_{ads} of each structure was calculated according to Equation 1, with surface$=$TiCl$_4$–MgCl$_2$ (using the *extended* cell). The obtained energies are collected in Table 2, where also ΔE_{ads} for
Table 2: Adsorption energy (ΔE_{ads}) of EtOH with TiCl$_4$–MgCl$_2$. The ΔE_{ads} for EtOH on the bare MgCl$_2$ is also shown. The relative stability (ΔE_{rel}) of the isomeric structures is reported. All the values are expressed in kJ/mol.

<table>
<thead>
<tr>
<th>Structure</th>
<th>ΔE_{ads} (kJ/mol)</th>
<th>ΔE_{rel} (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH-Mg1</td>
<td>-118</td>
<td>+1</td>
</tr>
<tr>
<td>EtOH-Mg2</td>
<td>-116</td>
<td>+3</td>
</tr>
<tr>
<td>EtOH-Mg3</td>
<td>-119</td>
<td>0</td>
</tr>
<tr>
<td>EtOH-TiCl$_4$</td>
<td>-17</td>
<td>+101</td>
</tr>
<tr>
<td>EtOH-bareMgCl$_2$</td>
<td>-118</td>
<td></td>
</tr>
</tbody>
</table>

EtOH is linked to a Mg atom, have almost the same energy (within 3 kJ/mol), with values similar to what was obtained on pure MgCl$_2$ (within 2 kJ/mol). The calculated Mg-O distances are 2.04-2.05 Å for all the structures, as found on EtOH-bare-MgCl$_2$. These results show that the presence of the TiCl$_4$ at the surface of MgCl$_2$ does not affect the interaction of EtOH with the MgCl$_2$ surface. No significant lateral interaction is seen between EtOH and TiCl$_4$, even for the closer Mg1 position. A particularly weak adsorption energy was found when EtOH is positioned on the octahedral TiCl$_4$ unit, since the binding is only due to the interaction between the H of hydroxyl and a Cl of TiCl$_4$. That position will hence not be occupied.

The increase of EtOH coverage on TiCl$_4$–MgCl$_2$ was studied using the compact cell; in particular, the coverages of 1/3, 2/3, 1, 4/3, 5/3 and 2 ML were considered, that correspond to 1, 2, 3, 4, 5 and 6 molecules per 3 surface Mg within the compact cell. In this case all the Mg atoms were considered equivalent, since within the extended system the lateral interactions between EtOH and TiCl$_4$ were observed to be negligible. The obtained structures, denoted as 1EtOH, 2EtOH, 3EtOH, 4EtOH, 5EtOH and 6EtOH, are shown in Figure S3 of the Supporting information. While the elemental analysis gave EtOH/Ti= 2/1, $\theta_{EtOH} = 2/3$ ML in the compact cell, values of $\theta_{EtOH} > 2/3$ ML were also taken into account. This quantifies
the effect of EtOH on the energetic of the system and, then, gives an idea of the importance of the EtOH coverage on the description of the system. Also, a sampling of the disposition of the EtOH molecules on the surface is provided, and, from this, representation of local portions of the pre-catalyst could be obtained.

For the cases of $\theta = 2/3$ ML and $\theta = 1$ ML, two different isomers were considered, indicated as 2EtOH-1 and 2EtOH-2 for 2/3 ML, 3EtOH-1 and 3EtOH-2 for 1 ML. In 2EtOH-1 and 3EtOH-1 two EtOH molecules interact with one Mg atom, while in 2EtOH-2 and 3EtOH-2 each EtOH interacts with a different Mg atom.

The differential adsorption energies were calculated according to the reaction shown in Equation 2; these values are indicative of the presence of the EtOH molecules on the adsorption of a further one.

\[
\text{EtOH} + \text{EtOH}_{n-1} - \text{TiCl}_4 - \text{MgCl}_2 \rightarrow \text{EtOH}_n - \text{TiCl}_4 - \text{MgCl}_2
\]

(2)

The results are summarized in Table 3, where the average adsorption energies are also shown.

Table 3: Differential (ΔE_{dif}) and average (ΔE_{av}) adsorption energies of EtOH with TiCl$_4$–MgCl$_2$ (compact model system). The relative stabilities (ΔE_{rel}) of the isomeric structures are also shown. All the values are expressed in kJ/mol. The coverage, θ, defined as number of molecules per surface Mg atom is also shown.

<table>
<thead>
<tr>
<th>Structure</th>
<th>θ</th>
<th>ΔE_{dif} (kJ/mol)</th>
<th>ΔE_{av} (kJ/mol)</th>
<th>ΔE_{rel} (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1EtOH</td>
<td>1/3</td>
<td>-119</td>
<td>-119</td>
<td></td>
</tr>
<tr>
<td>2EtOH-1</td>
<td>2/3</td>
<td>-86</td>
<td>-103</td>
<td>+36</td>
</tr>
<tr>
<td>2EtOH-2</td>
<td>2/3</td>
<td>-123</td>
<td>-121</td>
<td>0</td>
</tr>
<tr>
<td>3EtOH-1a</td>
<td>1</td>
<td>-99</td>
<td>-113</td>
<td>+6</td>
</tr>
<tr>
<td>3EtOH-2a</td>
<td>1</td>
<td>-104</td>
<td>-115</td>
<td>0</td>
</tr>
<tr>
<td>4EtOHb</td>
<td>4/3</td>
<td>-100</td>
<td>-111</td>
<td></td>
</tr>
<tr>
<td>5EtOH</td>
<td>5/3</td>
<td>-104</td>
<td>-104</td>
<td></td>
</tr>
<tr>
<td>6EtOH</td>
<td>2</td>
<td>-31</td>
<td>-92</td>
<td></td>
</tr>
</tbody>
</table>

a For the calculation of ΔE_{dif} 2EtOH-2 was considered.

b For the calculation of ΔE_{dif} 3EtOH-2 was considered.
The interaction energy relative to the adsorption of one EtOH molecule on the compact cell is similar to the ones obtained in the case of the extended one.

Table 3 shows that placing two ethanol molecules on the same surface Mg atom (2EtOH-1) is 36 kJ/mol less stable than distributing them on two different Mg centers (2EtOH-2). The adsorption energy of the second EtOH molecule is then equivalent to that of the first one. Also in the case of the 3EtOH the adsorption on different Mg atoms is energetically favoured, while the difference in energy between the two isomers is less important than the case of the adsorption of two EtOH molecules. For the third and fourth EtOH molecules (coverage of 1 and 4/3 ML) the differential adsorption energy is decreased by 15−20 kJ/mol. A markedly weaker adsorption is found at higher coverage.

The calculated 13C and 1H chemical shifts of EtOH interacting with TiCl$_4$−MgCl$_2$ are shown in Table S1, while their position with respect to the experimental 2D-HETCOR spectrum is indicated by the green and yellow inverted triangles in Figure 3. The values inherent to the CH$_2$ group are 71-73 ppm for 13C and 4-5 ppm for 1H; these values are in accordance with the experimental signal C.
The CH₂ chemical shifts obtained for one EtOH interacting with different Mg atoms (Mg1, Mg2 and Mg3) of the TiCl₄−MgCl₂ system do not significantly differ from these obtained for EtOH on the bare MgCl₂ (maximum ∆(δ¹³C) ≈ 1 ppm and maximum ∆(δ¹H) ≈ 0.3 ppm). This suggests that the presence of the TiCl₄ unit does not affect significantly the values of the chemical shifts of the EtOH interacting with the Mg, analogously to what was seen for the energies. The CH₃ group appears at 19-23 ppm for ¹³C and at 1 ppm for ¹H, while the proton chemical shift (OH group) is more dependent on the structure (2-4 ppm). The differences in chemical shifts for ¹EtOH−TiCl₄−MgCl₂ described with the extended and with the compact systems (∆(δ) ≈ 0.1 ppm for both ¹³C and ¹H) show that the change of Ti coverage does not affect the EtOH signal.

In order to evaluate the influence of the EtOH coverage, the NMR spectra were calculated also for the TiCl₄−MgCl₂ system with four EtOH molecules co-adsorbed (θEtOH = 4/3 ML); the obtained values are shown in Table S2 of the Supporting Information, while their position with respect to the experimental spectrum is indicated by the orange region in Figure 3. Figure 3 shows that the coverage has only a minor effect on the chemical shifts and confirms the identification of the signal C as the signal of the EtOH molecules on the surface.

For θEtOH = 1/9 ML and θEtOH = 4/3 ML the average ¹H chemical shifts are collected in Table S1 and S2, respectively. Their position with respect to the experimental ¹H-¹H DQ-SQ correlation spectrum is shown in Figure 4. For both θEtOH values considered, the calculated ¹H (CH₂)-¹H (CH₃) correlations identify the experimental correlation indicated with the blue line of Figure 2 (d) to EtOH molecules adsorbed on Mg.

Finally, the Span and the Skew were considered for the ¹³C signal of the CH₂ group. For both θEtOH = 1/9 ML and θEtOH = 4/3 ML, the calculated values are shown in Table S3 of the Supporting information. The span depends more on the coverage than the chemical shift, with 90 ppm at 1/9 ML and 79 ppm at 4/3 ML (average value). The comparison of the calculated values with the experimental ones relative to the C signal (δ¹³C = 69.1 ppm)
Figure 4: Graphical comparison of calculated and experimental 1H-1H correlations. The correlations inherent to the EtOH molecules adsorbed of TiCl$_4$-MgCl$_2$ are shown. The values inherent to the two conditions of EtOH coverages $\theta_{\text{EtOH}} = 1/9$ ML (green symbols) and $\theta_{\text{EtOH}} = 4/3$ ML (orange symbols) are shown. The calculated 1H-1H correlations were obtained considering the average chemical shifts of the CH$_2$ and CH$_3$ groups.

in Table 1 shows a slight overestimation of the calculated Span. The Skew is 0.4-0.5 but comparison with experiment should be considered with care, because experimental errors for this parameter can be important.

Alcoholysis of Ti-Cl or Mg-Cl by EtOH with formation of one EtO group

Following the interaction between the EtOH molecules with the TiCl$_4$—MgCl$_2$ system, alcoholysis of Ti-Cl by EtOH may occur leading to the formation of Ti-OEt groups.

In this regard, Figure 1 shows that the Cl species are not all equivalent. In particular, part I of the Figure shows that there are two different kinds of Cl bound to the Ti at different z coordinate with respect to the surface, labelled 1 and 2. Cl1 is terminal on the Ti,
while Cl2 is bridging Ti and Mg. Part II of Figure 1 points the two Cl\(^{-}\) ions (labelled Cl3) belonging to the MgCl\(_2\) surface that show a weak interaction with the Ti. A final group of Cl\(^{-}\) ions consists of those on the MgCl\(_2\) surface far from the Ti. Based on the results obtained for the adsorption of EtOH on TiCl\(_4\)–MgCl\(_2\), where TiCl\(_4\) appears to have only a short range influence on the MgCl\(_2\) surface, all these Cl\(^{-}\) were considered equivalent. For sake of completeness, the alcoholysis of Mg-Cl bonds in the bulk was also considered. The possible structures obtained after alcoholysis of M-Cl (M=Ti, Mg) are labeled EtO-1, EtO-2, EtO-3, EtO-surface and EtO-bulk according to the type of Cl atom reacted. They are shown in Figure 5. These structures were studied using both the extended and compact cells; the formation energies, \(\Delta E_{\text{form}}\), were calculated according to the reaction shown in equation 3, with \(n = 1\).

\[
n\text{EtOH}_{\text{gas}} + \text{TiCl}_4 - \text{MgCl}_2 \rightarrow (\text{OEt})_n - \text{TiCl}_{4-x} - \text{MgCl}_{2-y} + n\text{HCl}_{\text{gas}} \quad (3)
\]

with \(x + y = n\). The values of \(\Delta E_{\text{form}}\) and the relative stability, \(\Delta E_{\text{rel}}\) are summarized in Table 4.

Table 4 shows that both surface models (and Ti coverages) give the same relative stability order and very similar values of \(\Delta E_{\text{form}}\). The most significant variation in stability with the change of the model system is for the alcoholysis of Ti-Cl2 giving EtO-2, resulting in a destabilization of 7 kJ/mol when the compact cell is used. Besides the variation of TiCl\(_4\) coverage, going from the extended to the compact cell does not significantly influence the energetic of the considered structures. Table 4 shows that the alcoholysis of Ti-Cl bonds is more favorable than that of Mg-Cl bonds (the case of bulk Cl being very endothermic). However, we will also consider here the alcoholysis of Mg-Cl at the surface of MgCl\(_2\) since the calculated values of \(\Delta E_{\text{int}}\) is not highly endothermic and this species could be representative of the real surface of MgCl\(_2\), if defects, such as Cl\(^{-}\) vacancies, were present.

Among the isomers where EtO\(^{-}\) is close to Ti, EtO-3 is the less stable. Considering the
Figure 5: Possible structures obtained from the alcoholysis of one M-Cl (M= Ti, Mg) bond. The structure obtained using the extended model system are shown.

synthesis procedure of the pre-catalyst, EtO-3 can be assumed to be irrelevant for the description of the real system. The exothermic formation of the Ti—O bond is in agreement with the theoretical descriptions of the nature of the Ti—O and Ti—Cl bonds. The alcoholysis of M-Cl was also studied starting at higher EtOH coverage on the MgCl₂ support, \(\theta_{EtOH} = 4/3 \) ML. Note that alcoholysis is performed by a 5th molecule in the cell, so that the final coverage of EtOH+EtO is 5/3 ML. The same four positions as for \(\theta_{EtOH} = 0 \) ML
Table 4: Energy of formation, ΔE_{form} and relative stability, ΔE_{rel} for the alcoholysis of one M-Cl bond. The values obtained within the extended and the compact cells are shown. All the values are expressed in kJ/mol. Structure names refer to Figure 5.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Extended ΔE_{form} (kJ/mol)</th>
<th>Compact ΔE_{rel} (kJ/mol)</th>
<th>Extended ΔE_{rel} (kJ/mol)</th>
<th>Compact ΔE_{rel} (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtO-1</td>
<td>-38</td>
<td>0</td>
<td>-40</td>
<td>0</td>
</tr>
<tr>
<td>EtO-2</td>
<td>-37</td>
<td>+1</td>
<td>-30</td>
<td>+10</td>
</tr>
<tr>
<td>EtO-3</td>
<td>+11</td>
<td>+49</td>
<td>+11</td>
<td>+51</td>
</tr>
<tr>
<td>EtO-surface</td>
<td>+20</td>
<td>+58</td>
<td>+20</td>
<td>+60</td>
</tr>
<tr>
<td>EtO-bulk</td>
<td>+69</td>
<td>+107</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

were considered (the bulk Cl atom was excluded); the structures obtained in high coverage condition are shown in Figure S4 of the Supporting information. The obtained formation energies are summarized in Table 5, where the relative stabilities are also given. Table 5 shows that, in all the cases, alcoholysis becomes less favored at high EtOH coverage. Reactions at Cl1 and Cl2 are still exoenergetic, while the ones involving the Cl$^-\text{ of the MgCl}_2$ support became more endoenergetic. This general decrease in stability can be simply attributed to the steric hindrance exerted on the EtOH performing the alcoholysis by those chemisorbed on MgCl$_2$ at proximity of the Ti center.

Table 5: Formation energy, ΔE_{form} and relative stability, ΔE_{rel} for the alcoholysis of one M-Cl bond in presence of other EtOH molecules on the MgCl$_2$ support ($\theta_{\text{EtOH}} = 4/3$ ML). All the values are expressed in kJ/mol.

<table>
<thead>
<tr>
<th>Structure</th>
<th>ΔE_{form} (kJ/mol)</th>
<th>ΔE_{rel} (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4EtOH-EtO-1</td>
<td>-19</td>
<td>0</td>
</tr>
<tr>
<td>4EtOH-EtO-2</td>
<td>-19</td>
<td>0.3</td>
</tr>
<tr>
<td>4EtOH-EtO-3</td>
<td>+60</td>
<td>+79</td>
</tr>
<tr>
<td>4EtOH-EtO-surface</td>
<td>+83</td>
<td>+102</td>
</tr>
</tbody>
</table>

Globally, going from $\theta_{\text{EtOH}} = 0$ ML to $\theta_{\text{EtOH}} = 4/3$ ML does not influence the order of
stability of the different isomers.

The 13C and 1H chemical shifts calculated for the EtO$^-$ groups of these structures are collected in Tables S4 and S5, while the chemical shifts of the EtOH molecules present in the high coverage condition are shown in Table S6 of the Supporting information. The graphical representation of these chemical shifts on top of the experimental 2D-HETCOR spectrum is shown in Figure 6.

![Graphical comparison between the experimental 2D-HETCOR spectrum and the calculated 13C and 1H correlations. The CH$_2$ groups of the alcoholysis products, EtO$^-\text{TiCl}_4-x-\text{MgCl}_2-y$ with $x + y = 1$, are shown. The nomenclature given in Table 4 is used.](image)

For $\theta_{\text{EtOH}} = 0$ ML, the calculated NMR results on the CH$_2$ group of EtO$^-$ define three regions of 13C and 1H chemical shifts. The first group (~ 100 ppm for 13C and 5.5 ppm for 1H, green squares and green circles in Figure 6) corresponds to the signals of EtO-1 and EtO-2; the second group (~ 80 ppm for 13C and 4.2 for 1H green diamonds) is inherent to EtO-3. Finally, the third group (~ 69 ppm (13C) and 4.0 ppm (1H), green triangles) coincides with the signal of ethoxy on the MgCl$_2$ surface.

Within the uncertainty of the calculations, the peak A in the experimental spectrum can
be clearly associated to the terminal EtO-1 and bridging EtO-2 species, resulting from the alcoholysis of the Ti-Cl bond. Peak D could be attributed to the ethoxy groups obtained by alcoholysis of the Mg-Cl bond “far” from the TiCl₄ unit. This latter assignment is supported by the ¹³C chemical shifts of ethoxy groups in solid ClMg(OEt) and Cl₃Mg₂OEt well-defined species. It should be however noted that the reaction of EtOH with Mg-Cl is not observed in the case of the bare support MgCl₂(EtOH)₂, implying that Ti would play a role for that reaction on the pre-catalyst. In addition, the DFT calculations give an endoenergetic nature for this reaction by 20 kJ/mol, so that more reactive defects sites might be required on MgCl₂ for that reaction. Alternatively, HCl could also be scavenged by the large excess of TiCl₄.

A general overestimation of the calculated ¹³C chemical shifts can be noted (by 5 – 10 ppm). Figure 6 shows that, in principle, the chemical shifts of EtO-3 (green diamonds) could be associated to the B peak. However, this assignment is not conclusive, since it is the only case where the experimental ¹³C chemical shift is underestimated. Moreover, EtO-3 was above classified from its energy as not representative of the real system, consequently the B peak still remains unassigned.

The chemical shifts calculated for structures resulting form alcoholysis of M-Cl with spectator additional chemisorbed EtOH molecules on the support (θ_{EtOH} = 4/3 ML) are indicated with orange symbols in Figure 6. A slight shift to lower value (~3 ppm) of the ¹³C chemical shift with respect to the case of θ_{EtOH} = 0 ML can be noted. The only exception is the ¹³C chemical shift of EtO-3, that is, now, closer to the ones of EtO-1 and EtO-2. Globally, the results obtained for θ_{EtOH} = 4/3 ML are similar to the ones of θ_{EtOH} = 0 ML.

The assignments of the HETCOR spectrum were verified considering the ¹H correlations between the CH₂ and the CH₃ groups, using the average values of ¹H chemical shifts for these groups shown in Table S5 of the Supporting information; a graphical comparison with the experimental ¹H-¹H DQ-SQ correlations spectrum is provided in Figure 7. The ¹H(CH₂)-¹H(CH₃) correlation calculated for EtO-1 and EtO-2 on Ti, indicated in Figure 7 with green
Figure 7: Graphical comparison of calculated and experimental 1H-1H correlations. The correlations inherent to the first alcoholysis products are shown. The positions of the EtO$^-$ groups are labelled according to Figure 1. For each structure, the calculated 1H-1H correlations were obtained considering the average chemical shifts of the CH$_2$ and CH$_3$ groups. The values inherent to the two conditions of EtOH coverages $\theta_{\text{EtOH}} = 0$ ML (green symbols) and $\theta_{\text{EtOH}} = 4/3$ ML (orange symbols) are shown.

squares and circles, are 5.6-1.6 ppm and 5.4-1.3 ppm, respectively; these values can be associated to the experimental correlation 5.2-1.7 ppm (red line). Quite similar results were obtained for EtO-1 and EtO-2 for $\theta_{\text{EtOH}} = 4/3$ ML (orange squares and circles of Figure 7). For EtO$^-$ replacing one surface Cl$^-$, within $\theta_{\text{EtOH}} = 0$ ML, a 1H(CH$_2$)-1H(CH$_3$) correlation of 4.0-1.0 ppm was obtained, (green triangles in Figure 7). This reproduces the experimental correlation 4.2-1.4 ppm (blue line). For $\theta_{\text{EtOH}} = 4/3$ ML, the values are slightly shifted; a correlation 3.7-1.7 ppm was found in less good agreement with the experimental spectrum (orange triangles in Figure 7). This could indicate that the coverage in the structure 4EtOH-EtO-surface is too high with respect to the experimental situation. Indeed the elemental analysis indicates 2 EtOH/EtO per Ti atom.

Finally, for both θ_{EtOH} values considered here, the 1H(CH$_2$)-1H(CH$_3$) correlation found for EtO-3 does not reproduce any experimental signal. This corroborates the choice above to
not assign the 13C chemical shift of 85.0 ppm to EtO-3 and, consequently, the EtO-3 species is confirmed as not relevant for the description of the pre-catalyst.

The comparison of the calculated values of Span with the experimental ones (values relative to A and D in Table 1) shows a general reasonable overestimation of the Spam, as seen for the cases describing the interaction of EtOH with the surface.

Alcoholysis of Ti-Cl or Mg-Cl by EtOH with formation of two EtO groups

The case of a second alcoholysis of M-Cl leading to two EtO$^-$ groups around Ti was also analyzed. In this case Cl$^-$ in positions 1, 2 and 3 were considered; consequently, there are six structures possible, shown in Figure 8. Also in this case, both the extended and the compact cells were considered. The energies of formations, ΔE_{form}, calculated according to equation 3 with $n = 2$, are shown in Table 6, where also the relative stability is reported. Considering the results obtained with the extended cell, Table 6 shows that all the ΔE_{form}

Table 6: Energies of formation (ΔE_{form}) and relative stability (ΔE_{rel}) inherent to the alcoholysis of two M-Cl bonds within $\theta_{EtOH} = 0$ ML. All the values are expressed in kJ/mol.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Extended ΔE_{form} (kJ/mol)</th>
<th>Extended ΔE_{rel} (kJ/mol)</th>
<th>Compact ΔE_{form} (kJ/mol)</th>
<th>Compact ΔE_{rel} (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtO-1-1</td>
<td>-60</td>
<td>+5</td>
<td>-56</td>
<td>+2</td>
</tr>
<tr>
<td>EtO-2-2</td>
<td>-48</td>
<td>+16</td>
<td>-47</td>
<td>+11</td>
</tr>
<tr>
<td>EtO-1-2</td>
<td>-65</td>
<td>0</td>
<td>-58</td>
<td>0</td>
</tr>
<tr>
<td>EtO-1-3</td>
<td>-32</td>
<td>+33</td>
<td>-24</td>
<td>+34</td>
</tr>
<tr>
<td>EtO-2-3</td>
<td>-30</td>
<td>+35</td>
<td>-25</td>
<td>+33</td>
</tr>
<tr>
<td>EtO-3-3</td>
<td>+25</td>
<td>+90</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

are exoenergetic except the one relative to the structure EtO-3-3. Also, this structure is $+90$ kJ/mol higher in energy than the most stable one, EtO-1-2, and hence strongly improb-
Figure 8: Possible structures obtained from the alcoholysis of two M-Cl bonds and their relative nomenclature.

EtO-1-1

EtO-2-2

EtO-3-3

EtO-1-2

EtO-1-3

EtO-2-3

able; for these reasons EtO-3-3 was not studied using the compact cell and for $\theta_{EtOH} = 4/3$ ML. The most stable structure, EtO-1-2, combines a terminal EtO group on Ti and a bridge
one between Ti and Mg.

The energy values obtained using the *compact* cell reproduce quite well the ones obtained with the *extended* cell. The only significant difference is seen for the formation energy of EtO-1-2 (7 kJ/mol less exothermic in the *compact* cell). Hence, also in the case of two alcohohlysis steps, the increase of Ti coverage going from the *extended* to the *compact* cell does not significantly affect the description of the precatalytic system.

Table 7 shows the energy of the second alcoholsysis for both cells, considering EtO-1 and EtO-2 as starting structures. EtO-3 was not taken into account since we shown that it was not representative of the experimental pre-catalyst. Comparing the obtained data with the energy values of the first substitution (Table 4) it appears that, when one EtO$^-$ group is already present in a position 1 or 2, a second replacement in position 1 or 2 is less favorable by 10 to 26 kJ/mol, while a substitution in position 3 is slightly less endoenergetic. One exception is seen in the case of EtO-1-3 within the *compact* cell, where the substitution of Cl$^-$ in position 3 is slightly more endoenergetic (5 kJ/mol).

Clearly, a second alcoholsysis is plausible, and a replacement of a Cl$^-$ in position 1 and 2 is favored compared to a Cl$^-$ in position 3. Consequently, the structures EtO-1-1, EtO-2-2 and EtO-1-2 are expected to be representative of the experimental system. The second alcoholy-

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Extended</th>
<th>Compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtO-1-1</td>
<td>-22</td>
<td>-16</td>
</tr>
<tr>
<td>EtO-2-2</td>
<td>-11</td>
<td>-17</td>
</tr>
<tr>
<td>EtO-3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EtO-1-2</td>
<td>-27</td>
<td>-18</td>
</tr>
<tr>
<td>EtO-1-3</td>
<td>+6</td>
<td>+16</td>
</tr>
<tr>
<td>EtO-2-3</td>
<td>+7</td>
<td>+5</td>
</tr>
</tbody>
</table>
Table 8: Energies of formation (ΔE_{form}) and relative stability (ΔE_{rel}) inherent to the alcoholysis of two M-Cl bonds, with co-adsorbed EtOH molecules ($\theta_{EtOH} = 4/3$ ML). All the values are expressed in kJ/mol.

<table>
<thead>
<tr>
<th>Structure</th>
<th>ΔE_{form} (kJ/mol)</th>
<th>ΔE_{rel} (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4EtOH-EtO-1-1</td>
<td>-36</td>
<td>0</td>
</tr>
<tr>
<td>4EtOH-EtO-2-2</td>
<td>+17</td>
<td>+53</td>
</tr>
<tr>
<td>4EtOH-EtO-1-2</td>
<td>+10</td>
<td>+46</td>
</tr>
<tr>
<td>4EtOH-EtO-1-3 I</td>
<td>+50</td>
<td>+86</td>
</tr>
<tr>
<td>4EtOH-EtO-1-3 II</td>
<td>+40</td>
<td>+75</td>
</tr>
<tr>
<td>4EtOH-EtO-2-3</td>
<td>+26</td>
<td>+61</td>
</tr>
</tbody>
</table>

The alcoholysis was also studied in the presence of co-adsorbed EtOH molecules ($\theta_{EtOH} = 4/3$ ML). The structures obtained are shown in Figure S5 of the Supporting information. In this condition, two conformations of EtO-1-3 were taken into account: EtO-1-3-I, where the two EtO$^-$ are “eclipsed”, and EtO-1-3-II, where the two EtO$^-$ are “staggered”. The values of formation energies and the relative stability are summarized in Table 8.

Clearly, the double alcoholysis becomes less favorable when the MgCl$_2$ rows are already populated by EtOH molecules. Adsorbed EtOH molecules close to the Ti center exert significant steric repulsion with the two EtO$^-$ groups on Ti due to the close distance. Only the double alcoholysis of the top Ti-Cl bonds for which the created Ti-OEt groups point away from the surface (EtO-1-1) remains exothermic in these conditions. All other formation energies are positive, hence not favorable. Considering that the ratio EtOH/Ti obtained from the elemental analysis is 2/1, the pre-catalyst is expected to correspond to low coverage of EtOH.

The 13C and 1H chemical shifts of the EtO$^-$ groups calculated for this class of structures are shown on Figure 9, together with the range for the EtOH molecules present for $\theta_{EtOH} = 4/3 ML$ (green region). Numerical values are collected in Tables S8 and S9, while the chemical shifts of the EtOH molecules present for $\theta_{EtOH} = 4/3$ ML are summarized in Table S11 of the Supporting information. The 1H and 13C chemical shifts of the three most stable geometries, EtO-1-1 (dark green squares in Figure 9), EtO-2-2 (dark green circles)
Figure 9: Graphical comparison between the experimental 2D-HETCOR spectrum and the calculated 13C and 1H correlations for the structures resulting from the alcoholysis of two M-Cl bonds. EtO-x-x indicates the structures resulting from the alcoholysis of two equivalent M-Cl bonds (EtO-1-1, EtO-2-2 and EtO-3-3). The results in absence of co-adsorbed EtOH molecules ($\theta_{EtOH} = 0$ ML) and in their presence ($\theta_{EtOH} = 4/3$ ML) are shown. For $\theta_{EtOH} = 4/3$ ML, the calculated chemical shifts of the EtOH molecules adsorbed on the surface are also shown (green region of the Figure).

and EtO-1-2 (blue symbols) are between 4.4 and 5.6 ppm and 85 and 97 ppm, respectively. The values obtained cover both the peaks A and B of the experimental HETCOR spectrum. More specifically, peak B can be attributed to one of the EtO group in the EtO-2-2 species resulting from double alcoholysis of Ti-Mg bridging Cl atoms (that species is only 16 kJ/mol less stable than the most stable species from double alcoholysis which contribute to peak A). Another possibility for peak B could be the EtO-1-1 species perturbed by a neighboring EtOH molecule (orange squares in Figure 9), but this configuration appears unlikely considering the low EtOH coverage seen experimentally.

The HETCOR assignments were verified considering the 1H(CH$_2$)-1H(CH$_3$) correlation calculated using the average values of the CH$_2$ and CH$_3$ groups (see Table S10 of the Supporting information). A graphical comparison between the calculated correlations and the experimental 1H1H SQ-DQ correlation spectrum is shown in Figure 10. Within the incertitude of the calculation, the 1H(CH$_2$)-1H(CH$_3$) correlations obtained reproduce the experimental
Figure 10: Graphical comparison of calculated and experimental 1H-1H correlations. The correlations inherent to the alcoholysis of two M-Cl bonds are shown. The positions of the EtO$^-$ groups are named according to Figure 1. EtO-x-x indicates the structures resulting from the alcoholysis of two equivalent M-Cl bonds (EtO-1-1, EtO-2-2 and EtO-3-3). For each structure, the calculated 1H-1H correlations were obtained considering the average chemical shifts of the CH$_2$ and CH$_3$ groups. The values inherent to the two conditions of co-adsorbed EtOH coverages $\theta_{EtOH} = 0$ ML and $\theta_{EtOH} = 4/3$ ML are shown.

The span of the CSA tensors were analyzed; Table S12 collects all the values calculated, within the $\theta_{EtOH} = 0$ ML and $4/3$ ML. The comparison of the calculated data with the experimental ones (see the values relative to A and B signal of Table 1) gives a general overestimation of the calculated Span, similarly to what seen previously. However, among the values of θ_{EtOH} considered, the values obtained at $\theta_{EtOH} = 0$ ML are the ones closer to the experimental ones in agreement with the low observed EtOH/EtO coverage in the experiment.
Conclusion

The Ziegler-Natta pre-catalyst composed of TiCl$_4$ chemisorbed on MgCl$_2$ modified by EtOH as Lewis base was characterized by combining solid-state NMR and periodic-DFT calculations. The experimental 13C and 1H NMR spectra show that at least four different surface ethoxy species are present. The model chosen to represent the experimental pre-catalyst is constituted with a TiCl$_4$ complex chemisorbed on the (110) MgCl$_2$ surface. Figure 11 summarizes the results and shows all the species favorable from their total energy, realistic for their coverage and hence representative of the experimental system. The values of 1H and 13C chemical shifts are recalled for each structure and they are assigned to the features in the 2D-HETCOR spectrum.

At first the adsorption of EtOH on the surface was analysed. Calculations show that molecular adsorption in an associative manner can only happen on the surface Mg Lewis centers and not on the Ti. Several molecules were co-adsorbed, reaching a θ_{EiOH} of 2 ML. For $\theta > 4/3$ ML the values of differential adsorption energy remarkably decreased (in absolute value); consequently, the highest coverage considered was for $\theta_{EiOH} = 4/3$ ML. The 1H and 13C chemical shifts calculated for this class of structures (see Figure 11) reproduce the peak C of the 2D-HETCOR spectrum (Figure 2e).

Alcoholysis of M-Cl bonds was then considered, and reaction at the Ti center was shown to be exothermic, while that at Mg-Cl bond is weakly endothermic. Various coverage values of spectator EtOH groups on the surface were considered. These spectator molecules do not affect the stability order of the isomers resulting from alcoholysis, but a high coverage of EtOH makes the alcoholysis more difficult. Ethoxy species formed by the alcoholysis of Ti-Cl bonds (see Figure 11) explain the peak A in the experimental 1H-13C HETCOR spectrum (Figure 2e).

The presence of the peak D in this HETCOR spectrum was attributed to the alcoholysis of Mg-Cl bonds. The calculated NMR parameters sustain this assignment, however the slight
Figure 11: Summary of the calculated structures representative of the pre-catalyst and assignment of the experimental 2D-HETCOR spectrum.

A 91.1-1.5 ppm \(^{13}\text{C} \cdot ^{1}\text{H}\)

B 85.0-1.5 ppm \(^{13}\text{C} \cdot ^{1}\text{H}\)

C 69.1-4.4 ppm \(^{13}\text{C} \cdot ^{1}\text{H}\)

D 60.1-4.0 ppm \(^{13}\text{C} \cdot ^{1}\text{H}\)

endothermic character if this reaction of the perfect (110) surface suggest that it requires more defective sites.

Double alcoholysis at the same Ti center was calculated to be an energy favorable possibility, but that reaction is more sensitive to the presence of a large coverage (higher than 1ML) of spectator EtOH groups on the surface.

These Ti-OEt species EtO-1-1, EtO-1-2 and EtO-2-2 (see Figure 11) resulting from double alcoholysis of Ti-Cl bonds match peak A of the HETCOR spectrum. The specific case resulting from double alcoholysis of the bridging Ti-Cl-Mg bonds (EtO-2-2) provides one
ethoxy group at lower 13C chemical shift and can explain the B shoulder in the spectrum. As a summary the HETCOR spectrum can be fully interpreted. The large A peak is attributed to single or double ethoxy species on Ti, and its B shoulder is associated to the Mg-EtO-Ti-OEt-Mg species. Peak C at lower 13C chemical shift is explained by chemisorbed EtOH molecules on the Mg surface atoms, and the D feature can only be attributed to ethoxy groups on Mg, resulting from alcoholysis. The proposed species also explain the correlations seen in the BABA 1H-1H correlation spectrum. Hence, from the combined NMR and theory approach, it is clear that ethoxy ligands are present of surface Ti atoms as a major species since this explains the presence of the peaks A and B in the 2D-CPMAS NMR spectra. Ethoxy or EtOH ligands are also present on surface Mg atoms, yielding peaks C and D. Unfortunately, intensities are not quantitative under these NMR conditions. It is thus not possible to provide an accurate relative ratio of EtO$^-$/EtOH ligands present on Ti vs Mg atoms. The values of 2 EtOH(EtO$^-$/Ti determined by elemental analysis is an upper bound for the number of EtO$^-$ ligands per Ti. While it is not possible to determine the exact ratio of Ti centers that bear EtO$^-$ ligands, NMR data suggest that this fraction is important.

The situation of the precatalyst prepared with EtOH can be compared to the case where THF is used as a Lewis base, which was studied before. Molecular chemisorption of THF on the Mg surface site and opening of THF on Ti forming an alkoxy-chloro compound was observed. The ethoxy formed here is reminiscent of the alkoxy-chloro formed with THF. The case of EtOH shows however two important differences: double alcoholysis was shown to occur, explaining the B shoulder in the spectrum, and the amount of ethoxy species versus the remaining ethanol appears much larger than that of opened THF versus molecular intact one. The combination of NMR and DFT calculations hence allowed a detailed characterization of the structure of TiCl$_4$-MgCl$_2$-EtOH. Even if the structures model here can fully explain the main features of the NMR spectra, it cannot be excluded that Ti and EtO$^-$ co-adsorption structures on other surfaces (such as the (104) surface) could also contribute in a minor way to the measured broad spectra. The study of the pre-catalyst structure will be the starting
point in the atomic-level study of the activation process when aluminum alkyl co-catalysts will be contacted with precatalysts to form titanium-carbon bonds at their surface. In this regard, it is expected that the EtO\(^-\) groups linked to the Ti centers influence the interaction of the Ti complex with AlEt\(_3\) during the activation of the catalysts as well as the relative stability of the possible products resulting from that interaction.

Acknowledgement

The authors thank the PSMN, CINES and IDRIS for the computational resources. V. D’Anna acknowledges the Swiss National Science Foundation (Early Post-Doc mobility).

Supporting Information Available

The images of the structures obtained for \(\theta_{\text{EtOH}} = 4/3\) ML and the \(^{13}\text{C}\) and \(^{1}\text{H}\) chemical shifts calculated for all the structure shown are collected in the Supporting information. This material is available free of charge via the Internet at http://pubs.acs.org/.

References

(7) Lloyd, L. *Handbook of Industrial Catalysts*; Fundamental and Applied Catalysis; Springer, 2011; Chapter 8.

(21) Thushara, K. S.; Gnanakumar, E. S.; Mathew, R.; Ajithkumar, T. G.; Rajamohanan, P. R.; Bhaduri, S.; Gopinath, C. S. MgCl₂·4((CH₃)₂CHCH₂OH): A New Molecular Adduct for the Preparation of TiClₓ/MgCl₂ Catalyst for Olefin Polymerization. *Dalton Trans.* **2012**, *41*, 11311–11318.

