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a b s t r a c t 

The question of stem cell control is at the center of our understanding of tissue functioning, both in 

healthy and cancerous conditions. It is well accepted that cellular fate decisions (such as divisions, dif- 

ferentiation, apoptosis) are orchestrated by a network of regulatory signals emitted by different cell pop- 

ulations in the lineage and the surrounding tissue. The exact regulatory network that governs stem cell 

lineages in a given tissue is usually unknown. Here we propose an algorithm to identify a set of candi- 

date control networks that are compatible with (a) measured means and variances of cell populations in 

different com partments, (b) qualitative information on cell population dynamics, such as the existence of 

local controls and oscillatory reaction of the system to population size perturbations, and (c) statistics of 

correlations between cell numbers in different compartments. Using the example of human colon crypts, 

where lineages are comprised of stem cells, transit amplifying cells, and differentiated cells, we start 

with a theoretically known set of 32 smallest control networks compatible with tissue stability. Utilizing 

near-equilibrium stochastic calculus of stem cells developed earlier, we apply a series of tests, where we 

compare the networks’ expected behavior with the observations. This allows us to exclude most of the 

networks, until only three, very similar, candidate networks remain, which are most compatible with the 

measurements. This work demonstrates how theoretical analysis of control networks combined with only 

static biological data can shed light onto the inner workings of stem cell lineages, in the absence of direct 

experimental assessment of regulatory signaling mechanisms. The resulting candidate networks are dom- 

inated by negative control loops and possess the following properties: (1) stem cell division decisions are 

negatively controlled by the stem cell population, (2) stem cell differentiation decisions are negatively 

controlled by the transit amplifying cell population. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The stem cell lineage is a basic unit of hierarchical tissues and

as such it has attracted the attention of both experimental biolo-

gists, and mathematical/computational modelers. The question of

stem cell control is at the center of our understanding of tissue

(mal-) functioning. Every day, cells in hierarchical tissues perform

their specific functions and die to be replaced by new cell di-

visions. This process is stochastic in nature (see e.g. Arai, 2016;

Wagers et al., 2002 ), and involves very large numbers of cellular

events. The cells involved in the functioning and renewal of an or-

gan differ from each other by their division and apoptosis capabil-
∗ Corresponding author. 
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ties, as well as the types of signals they send and the kinds of cell

ate decisions they make. 

In Komarova (2013) we developed a framework of reasoning

bout stem cell signaling networks. Let us suppose that there are

hree compartments in a set cell lineage: stem cells (SCs), transit

mplifying cells (TACs) and differentiated cells (DCs). In the colon

nd intestinal crypts, as well as other structures, these are linearly

rdered with SC at the bottom, DC cells at the top, and TAC in be-

ween. In order to maintain the number of each cell type, the rate

f removal of the DCs from the top is balanced by division and

ifferentiation of the SCs and TACs below. 

Each cellular compartment may receive signals from other com-

artments (as well as from its own cells), which influence the rate

f differentiation and proliferation. For example, having too few

Cs may call for the need of faster differentiation of TACs into

Cs. This faster differentiation of TACs may be achieved by reliev-

ng the negative control on the probability of TACs to differenti-

http://dx.doi.org/10.1016/j.jtbi.2017.06.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.06.033&domain=pdf
mailto:komarova@uci.edu
http://dx.doi.org/10.1016/j.jtbi.2017.06.033
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1 The considerable variation in the number of quiescent stem cells has previously 

been noted ( Table 1, Bravo and Axelrod, 2013 ). The method of measuring cell num- 

bers and the measurement reliability has been described in detail in (Additional 

File 5, Bravo and Axelrod, 2013 ). The experimental error in the measurement of the 

number of stem cells was determined by 49 repeated measurements of one crypt, 

C.V. = 7.7%. Since the experimental error in repeated measurements of one crypt 

was much less than the measured variation between 49 adjacent crypts, C.V. = 102%, 

it is likely that the measured variation between adjacent crypts is really indicative 

of a large variation between crypts, and not just due to experimental error. 
te exerted by DCs. Many molecules produced by these cells have

een detected ( Gregorieff et al., 2005; Hsieh, 2012; Kosinski et al.,

007 ), but their role in each step of the regulatory network is yet

o be completely determined ( Crosnier et al., 2006; Medema and

ermeulen, 2011 ). 

Theoretically, each cell population may influence (in a negative

r positive way) each of the processes that happen in the system,

hich gives rise to a very large number of networks of cellular

ontrol. In Komarova (2013) we examined such controls from the

linear) stability point of view. We called the stable networks with

he smallest possible number of loops the “minimal networks”. In

 three-compartment system, assume that the following five pro-

esses can be controlled: divisions of SCs and TACs, differentiations

f SCs and TACs, and death of DCs. It turns out that in this case, the

mallest number of control loops is three, and there are exactly 32

ifferent three-loop control networks that are stable. These 32 sta-

le networks have different topologies and different signs of con-

rol loops (positive or negative). 

In the present paper we are interested in determining the

ost likely control network(s) that govern the regulation of hu-

an colon crypt stem cell lineages. While the analysis of Komarova

2013) restricts the total number of possibilities to 20 (plus addi-

ional 12 networks with non constant DC death terms), the analysis

id not indicate which of the 32 were most likely to describe the

egulation in a real biological system. 

We have now determined the most likely regulatory network(s),

mong the 32 three-compartment stable networks, by using ac-

ual measurements of the number of SCs, TACs, and DCs in biop-

ies of human colon crypts, and additional mathematical method-

logy. Bravo and Axelrod (2013) performed detailed measurements

f the number of each of the three cell types (SCs, TACs, DCs) in

9 colon crypts in human biopsy specimens. In this paper we will

xamine each of the 32 possible networks (including the 20 net-

orks explicitly presented in Komarova (2013) plus 12 additional

nes) to determine whether it can produce the correct measured

eans and variances of cell population numbers. In addition to

his static information we have also used data on the dynamics of

njury recovery, as well as experimentally obtained intracrypt cor-

elations. Using these criteria, a selection algorithm was devised

hat identified three of the 32 possible control networks as most

ikely the ones corresponding to the regulation of homeostasis of

uman colon crypts. 

This paper contributes to the growing literature on the the-

ry of stem cells, which ranges from ODE modeling ( Nakata et al.,

012; Stiehl and Marciniak-Czochra, 2011 ) to stochastic modeling

 Dingli et al., 2007; Enderling et al., 20 09a, 20 07, 20 09b, 20 09c ),

nd includes research of stem cells in the context of feedback

echanisms ( Konstorum et al., 2016; Kunche et al., 2016; Lander

t al., 2009; Youssefpour et al., 2012 ), carcinogenesis ( Ashkenazi

t al., 20 08, 20 07; Boman et al., 20 08; Enderling and Hahnfeldt,

011; Ganguly and Puri, 2006, 2007; Hardy and Stark, 2002; John-

ton et al., 2007; Yatabe et al., 2001 ), modeling hematopoietic

C dynamics ( Foo et al., 2009; Glauche et al., 2007; Marciniak-

zochra et al., 2009; Stiehl and Marciniak-Czochra, 2012 ), and can-

er stem cells ( Dingli and Michor, 2006; Enderling, 2015; Enderling

nd Hahnfeldt, 2011; Hillen et al., 2013; Johnston et al., 2010; Scott

t al., 2014 ). 

. Materials and Methods 

.1. Data Description 

We have measured the number and location of dividing cells

Ki-67 positively stained cells) and non-dividing cells (Ki-67 non-

tained cells) in 49 colon crypts in human biopsy specimens. The

on-dividing cells at the bottom of the crypt are considered qui-
scent stem cells, the non-dividing cells in the top two-thirds of

he crypt are considered differentiated cells. The dividing cells near

he bottom third of the crypt are considered to consist of tran-

ient amplifying cells and active stem cells ( Li and Clevers, 2010 ).

he experimental details of the source of the specimens, measure-

ent of each cell type, and determination of reliability of measure-

ents, have previously been described ( Bravo and Axelrod, 2013 ).

he measurements are included in the supplement to this article. 

For our model we need an approximate distribution of active

ells into active stem cells and transit amplifying cells. This can

e done by using experimental observations, as described below.

i and Clevers (2010) have reviewed evidence for the existence of

uiescent stem cells at the bottom of the crypt and, in addition, of

ctive stem cells among the dividing cells above the bottom. The

xistence of a quiescent stem cell population is consistent with

he observation that mTert-expressing slowly cycling cells are re-

istant to intestinal injury and function in intestinal regeneration

 Montgomery et al., 2011 ). And the existence of an active stem cell

opulation is consistent with the observation that rapidly cycling

gr5 + cells are highly sensitive to intestinal damage ( Barker et al.,

007 ). We will denote the fraction of dividing cells that are active

tem cells as W , and the fraction of active cells that are transient

mplifying cells as (1 − W ) . The value of W can be estimated using

he following considerations. 

Cells staining positive for various stem cell markers (Musashi-

, Bmi1, Lgr5, Lrig1) have been observed in the region of divid-

ng cells in the small intestine of the mouse ( Barker et al., 2007;

uñoz et al., 2012; Potten et al., 2003; Powell et al., 2012 ). 

W , the proportion of active stem cells among all of the divid-

ng cells in human colon crypts, can be determined from data

vailable about human colon crypts stained with the stem cell

arker Musashi-1, and stained separately with the proliferating

ell marker Ki-67. 

The percentages of Musashi-1 positively staining cells at differ-

nt positions in the human colon crypt were reported in Nishimura

t al. (2003) Fig. 4 . According to this study, 69% of all positively

taining cells are in positions 1–7 at the bottom of the crypt, and

1% of all positively staining cells are in positions 8 and above.

ravo and Axelrod (2013) have reported, in Table 1 , the number

f Ki-67 positively and negatively staining cells at different posi-

ions of the human colon crypt. The average number of negatively

taining cells in positions 1–7, is 35.7 ± 36.3 s.d., 1 and the average

umber of positively stained cells in positions 8 and above is 623.9

234.1 s.d. The negatively stained cells at the bottom of the crypt

re considered quiescent stem cells. The positively stained cells are

onsidered to comprise all of the dividing cells, including both ac-

ive stem cells and transient amplifying cells. 

The probability distribution for the values of W , as well as the

ower and upper bounds of W , can be determined. Using the nota-

ions defined in Table 1 , the number of active stem cells is given

y 

 SCa = # SC q 
% SC a 

% SC q 
, 

nd the parameter W can be calculated as follows: 

 = 

# SCa 

# Ki 67+ 

= 

# SCq 

# Ki 67+ 

% SCa 

% SCq 
. (1) 
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Table 1 

Notations used to calculate W , the fraction of active SCs. 

% SCq The percentage of all of the stem cells that are at the bottom of the crypt, 

e.g. quiescent stem cells 

% SCa The percentage of all of the stem cells that are above the bottom of the crypt, 

e.g. active stem cells in the region of dividing cells 

# SCq The number of quiescent stem cells at the bottom of the crypt 

# SCa The number of active stem cells above the bottom of the crypt 

in the region of dividing cells 

# Ki 67+ The total number of dividing cells 

Fig. 1. Estimating cell numbers. (a) Histogram of the experimentally calculated values of W , Eq. (1) . The apparent bimodality of the distribution may be ascribed to the 

relative scarcity of the data, because the distribution on a non-logarithmic scale does not appear bimodal. (b) Histograms showing the distribution of cell numbers per crypt, 

by cell type, where W = 0 . 03 was assumed. 
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The first quotient in the right hand side of this expression can

be calculated from the data of Bravo and Axelrod (2013) , and the

second quotient from Nishimura et al. (2003) . The probability dis-

tribution of the estimated values of W are shown in Fig. 1 (a). It

was approximated numerically using all the realizations of the cell

numbers measured experimentally in Bravo and Axelrod (2013) .

The mean of this distribution corresponds to W = 0 . 03 , the value

used in the calculations presented here, unless otherwise noted.

In Fig. 1 (b) we show the frequency histograms of the three cell

types obtained from the data by Bravo and Axelrod (2013) using

 = 0 . 03 ; again, this was created using all the experimentally ob-

tained values of the cell numbers. We also investigated the effect

of W = 0 , as discussed in the last paragraph of Section 3 . 

2.2. Stochastic model formulation 

Consider a three-compartment model consisting of stem cells

(SCs), transient amplifying cells (TACs), and differentiated cells

(DCs). We will refer to the number of stem cells as I 1 , the number

of transient amplifying cells as I 2 , and the number of differenti-

ated cells as I 3 . We assume only symmetric divisions of stem cells,

see section Results and Discussion, and employ a Poisson process

to describe the dynamics (Poisson processes, and a related birth-

death process, are conventionally used to describe cellular pro-

cesses, see e.g. Nowak, 2006; Wodarz and Komarova, 2014 ). The

cells are subject to the following changes during an infinitesimally

small time-increment, �t : 

• With probability L 1 ( I 1 , I 2 , I 3 ) �t a stem cell (SC) divides. 

– With probability L 1 ( I 1 , I 2 , I 3 ) P 1 ( I 1 , I 2 , I 3 ) �t a SC differentia-

tion takes place resulting in a creation of two transient am-

plifying cells (TACs), (I 1 , I 2 , I 3 ) → (I 1 − 1 , I 2 + 2 , I 3 ) . 

– With probability L 1 (I 1 , I 2 , I 3 )(1 − P 1 (I 1 , I 2 , I 3 ))�t a SC pro-

liferation takes place in a creation of SC, (I 1 , I 2 , I 3 ) → (I 1 +
1 , I 2 , I 3 ) . 

• With probability L 2 ( I 1 , I 2 , I 3 ) �t a transient amplifying cell (TA)

divides. 
– With probability L 2 ( I 1 , I 2 , I 3 ) P 2 ( I 1 , I 2 , I 3 ) �t a TA differentia-

tion takes place resulting in a creation of two differentiated

cells (DCs), (I 1 , I 2 , I 3 ) → (I 1 , I 2 − 1 , I 3 + 2) . 

– With probability L 2 (I 1 , I 2 , I 3 )(1 − P 2 (I 1 , I 2 , I 3 ))�t a TA pro-

liferation takes place resulting in a creation of a TA,

(I 1 , I 2 , I 3 ) → (I 1 , I 2 + 1 , I 3 ) . 
• With probability D ( I 1 , I 2 , I 3 ) �t , a differentiated cell dies,

(I 1 , I 2 , I 3 ) → (I 1 , I 2 , I 3 − 1) . 

A deterministic model that captures these events can be ex-

ressed as the following system of ordinary differential equa-

ions: 

˙ 
 1 = −L 1 P 1 + L 1 (1 − P 1 ) , (2)

˙ 
 2 = 2 L 1 P 1 − L 2 P 2 + L 2 (1 − P 2 ) , (3)

˙ 
 3 = 2 L 2 P 2 − D. (4)

he equilibrium of this system, ( ̄I 1 , ̄I 2 , ̄I 3 ) , can be obtained by solv-

ng Eqs. (2) – (4) in steady state: 

 1 ( ̄I 1 , ̄I 2 , ̄I 3 ) = L 0 , D ( ̄I 1 , ̄I 2 , ̄I 3 ) = D 0 , L 2 ( ̄I 1 , ̄I 2 , ̄I 3 ) = D 0 − L 0 , (5)

 1 ( ̄I 1 , ̄I 2 , ̄I 3 ) = 

1 

2 

, P 2 ( ̄I 1 , ̄I 2 , ̄I 3 ) = 

D 0 

2(D 0 − L 0 ) 
. (6)

.3. Stochastic analysis 

There are five distinct processes that can take place in this sys-

em: differentiation divisions of SCs ( Q 1 ), proliferation divisions of

Cs ( Q 2 ), differentiation divisions of TACs ( Q 3 ), proliferation divi-

ions of TACs ( Q 4 ), and death ( Q 5 ). The rates of these processes are

iven by: 

 1 =L 1 P 1 ; Q 2 =L 1 (1 − P 1 ) ; Q 3 =L 2 P 2 ; Q 4 =L 2 (1 − P 2 ) ; Q 5 = D. (7)
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he stochastic description in terms of the Kolmogorov forward

quation is given by the following equation for the variable ϕ I 1 ,I 2 ,I 3 
,

he probability to find the system in state ( I 1 , I 2 , I 3 ) at time t: 

˙  I 1 ,I 2 ,I 3 = ϕ I 1 +1 ,I 2 −2 ,I 3 ∗ Q 1 (I 1 + 1 , I 2 − 2 , I 3 ) 

+ ϕ I 1 −1 ,I 2 ,I 3 ∗ Q 2 (I 1 − 1 , I 2 , I 3 ) 

+ ϕ I 1 ,I 2 +1 ,I 3 −2 ∗ Q 3 (I 1 , I 2 + 1 , I 3 − 2) 

+ ϕ I 1 ,I 2 −1 ,I 3 ∗ Q 4 (I 1 , I 2 − 1 , I 3 ) 

+ ϕ I 1 ,I 2 ,I 3 +1 ∗ Q 5 (I 1 , I 2 , I 3 + 1) 

−ϕ I 1 ,I 2 ,I 3 ∗
5 ∑ 

n =1 

Q n (I 1 , I 2 , I 3 ) , (8) 

here the processes of the right hand side are presented in the

ame order as they appear in Section 2.2 . 

The methodology presented here was developed in Komarova

2013) and Yang et al. (2015b ) and is related to the linear noise

pproximation of Van Kampen (1992) . A detailed derivation and

ustification can be found in Sun et al. (2016) . Let us use the sym-

ol H I 1 ,I 2 ,I 3 
to denote any of the functions L 1 ( I 1 , I 2 , I 3 ), L 2 ( I 1 , I 2 ,

 3 ), P 1 ( I 1 , I 2 , I 3 ), P 2 ( I 1 , I 2 , I 3 ), and D ( I 1 , I 2 , I 3 ). Suppose that we can

epresent the functions H I 1 ,I 2 ,I 3 
near the equilibrium as H I 1 ,I 2 ,I 3 

=
(εI 1 , εI 2 , εI 3 ) , where the parameter ε � 1 defines the weakness

f the dependence of these rates on the populations that control

hem. Note that in this methodology, the peak of the probability

istribution of the number of cells is assumed to be located near

opulation sizes of the order 1/ ε and has a width of the order of

/ ε1/2 , see the derivation in Komarova (2013) . While the validity

f this approach has been studied extensively, see e.g. Gardiner

2004) and Wallace et al. (2012) , in our context it is important

o note that typical fluctuations (of size 1/ ε1/2 ) must remain suf-

ciently small compared with the typical population size ( ∼ 1/ ε),

uch that the system will remain near the equilibrium and stochas-

ic extinction is an unlikely event (for a time-duration which grows

ith 1/ ε). These are conditions of homeostasis in a biological sys-

em; our approximation will technically break down outside the

omeostatic regime. 

It is convenient to denote the continuous variables 

 1 = εI 1 , x 2 = εI 2 , x 3 = εI 3 , 

nd further shift the cell counts to be equal to zero at the equilib-

ium: 

 1 = I 1 − Ī 1 , i 2 = I 2 − Ī 2 , i 3 = I 3 − Ī 3 . (9)

e can expand the functions H I 1 ,I 2 ,I 3 
around the equilibrium

( ̄I 1 , ̄I 2 , ̄I 3 ) in Taylor series: 

 I 1 ,I 2 ,I 3 = H Ī 1 , ̄I 2 , ̄I 3 
+ H x 1 εi 1 + H x 2 εi 2 + H x 3 εi 3 + O (ε2 ) , (10)

here the subscripts x 1 , x 2 , and x 3 denote the partial derivative of

he function with respect to its argument, evaluated at ( ̄I 1 , ̄I 2 , ̄I 3 ) .

erms of the order of ε2 will be dropped. 

To obtain the equations for the means and variances, we will

ollow the stochastic calculus of stem cells methodology devel-

ped in Sun et al. (2016) . The stochastic processes defined in

ection 2.2 can be characterized by the following cell number

hanges: 

Q 1 : Differentiation of SCs, �1 I 1 = −1 , �1 I 2 = 2 , �1 I 3 = 0 , 

Q 2 : Proliferation of SCs, �2 I 1 = 1 , �2 I 2 = 0 , �2 I 3 = 0 , 

Q 3 : Differentiation of TACs , �3 I 1 = 0 , �3 I 2 = −1 , �3 I 3 = 2 , 

Q 4 : Proliferation of TACs, �4 I 1 = 0 , �4 I 2 = 1 , �4 I 3 = 0 , 

Q : Death of DCs, � I = 0 , � I = 0 , � I = −1 . 
5 5 1 5 2 5 3 
Then Eq. (8) can be expressed as: 

˙  I 1 ,I 2 ,I 3 = 

5 ∑ 

k =1 

ϕ I 1 −�k I 1 ,I 2 −�k I 2 ,I 3 −�k I 3 Q k (I 1 − �k I 1 , I 2 −�k I 2 , I 3 −�k I 3 ) 

−ϕ I 1 ,I 2 ,I 3 

5 ∑ 

k =1 

Q k (I 1 , I 2 , I 3 ) . (11) 

efine ˜ ϕ i m ,i n ,i k 
= ϕ I m ,I n ,I k 

, and 

˜ Q k (i m 

, i n , i k ) = Q k (I m 

, I n , I k ) , then Eq.

11) can be rewritten as: 

˙ ˜  i 1 ,i 2 ,i 3 = 

5 ∑ 

k =1 

˜ ϕ i 1 −�k I 1 ,i 2 −�k I 2 ,i 3 −�k I 3 
˜ Q k (i 1 − �k I 1 , i 2 − �k I 2 , i 3 − �k I 3 ) 

− ˜ ϕ i 1 ,i 2 ,i 3 

5 ∑ 

k =1 

˜ Q k (i 1 , i 2 , i 3 ) . (12) 

ere we use a standard technique to derive equations for the mo-

ents. Let us adopt the following notations for the first moments

nd the second moments of cell numbers: 

 m 

= 

∑ 

i 1 ,i 2 ,i 3 

˜ ϕ i 1 ,i 2 ,i 3 i m 

, y qp = 

∑ 

i 1 ,i 2 ,i 3 

˜ ϕ i 1 ,i 2 ,i 3 i q i p . 

e multiply both sides of Kolmogorov forward Eq. (12) by i m 

and

y i p i q , and sum over the indices i 1 , i 2 , i 3 , to obtain: 

5 ∑ 

k =1 

∑ 

i 1 ,i 2 ,i 3 

˜ ϕ i 1 ,i 2 ,i 3 
˜ Q k (i 1 , i 2 , i 3 )(i m 

+ �k I m 

) 

−
5 ∑ 

k =1 

∑ 

i 1 ,i 2 ,i 3 

˜ ϕ i 1 ,i 2 ,i 3 
˜ Q k (i 1 , i 2 , i 3 ) i m 

= 0 , (13) 

5 ∑ 

k =1 

∑ 

i 1 ,i 2 ,i 3 

˜ ϕ i 1 ,i 2 ,i 3 
˜ Q k (i 1 , i 2 , i 3 )(i p + �k I p )(i q + �k I q ) 

−
5 ∑ 

k =1 

∑ 

i 1 ,i 2 ,i 3 

˜ ϕ i 1 ,i 2 ,i 3 
˜ Q k (i 1 , i 2 , i 3 ) i p i q = 0 , (14) 

here m = 1 , 2 , 3 and p, q = 1 , 2 , 3 . The right hand side of the

quations is zero because we consider the equilibrium state and

he time-derivatives in the Kolmogorov forward equation are zero. 

Next, we use expansions (10) in Eqs. (13) –(14) , and truncate the

xpressions by keeping terms of order ε and ε2 in equations for

he first and second moments respectively. This results in the fol-

owing moment equations of the cell numbers: 

 m 1 y 1 + a m 2 y 2 + a m 3 y 3 = 0 , m = 1 , 2 , 3 , (15) 

3 
 

j=1 

a p j y jq + 

3 ∑ 

j=1 

a q j y p j = −s pq , p, q = 1 , 2 , 3 , (16) 

here a m j = 

∑ 5 
k =1 

∂Q k 
∂x j 

�k I m 

, s pq = 

∑ 5 
k =1 Q k ∗�k I p �k I q , and Q k ∗ is

he equilibrium of Q k . 

Because of definition (9) , the means y m 

are all zero, and solving

q. (16) , we can obtain the expressions for the second moments,

hich are equal to the cell number variances, 

 ar[ I m 

] = y mm 

, m = 1 , 2 , 3 . 

. Selection Algorithm 

In Komarova (2013) , we have identified 20 different 3-

ompartment minimal control networks that are compatible with

table homeostatic control, see Fig. 2 . These networks are charac-

erized by constant death terms. In addition, there are 12 mini-

al control networks with non-constant death terms, see Fig. 3 .
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Fig. 2. Twenty 3-compartment minimal control networks identified in Komarova (2013) , which are characterized with constant death rates. The three types of cells are 

marked by SC (stem cells), TA (transient amplifying cells), DC (differentiated cells). Horizontal arrows indicate the cell fate decisions: div1 and div2 the division process 

of SCs and TACs; diff1 and diff2 are the probability of the division to be a differentiation, as opposed to proliferation, for SCs and TACs respectively. The curved positive 

and negative arrows indicate control. The point of the arrow corresponds to the process that is being controlled, and the base of the arrow corresponds to the cell type 

controlling the process. 

Fig. 3. Twelve additional 3-compartment minimal control networks with non-constant death rates. Notations are as in Fig. 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

o  

f  

c  

m  

m  

a  

a  

t  

T  

f  

s  

a

C  
Regulated death terms occur in different contexts and have been

modelled in the past ( Fuertinger et al., 2012; Mahaffy et al., 1998;

Stiehl et al., 2014a, 2014b ). All of these networks have exactly three

controls (it was shown that this is the minimal number of controls

compatible with stability), and include the 5 processes described

in Section (2.2) . We will use a selection algorithm to determine

the most likely minimal control network that matches the distri-

bution of the measured data, see Fig. 4 . This algorithm allows us

to use biological criteria to exclude many of the possible control

networks depicted in Figs. 2 and 3 . It uses the data generated for

the distribution of the cell numbers (see Supplement) as well as

other considerations from the literature. The algorithm is demon-

strated here using the 20 constant death rate networks of Fig. 2 .

The 12 networks of Fig. 3 are considered in Appendix C . The fol-

lowing is the step-by-step procedure used. 
a  
hoose networks with local controls. Cell-cell communication may

ccur by direct mechanical contact or by dispersal of molecules

rom a source cell. Mechanisms for the dispersal of molecules in-

lude transport through cell membranes, extracellular Brownian

otion, or transport on the outer cell surface ( Schier and Needle-

an, 2009 ). In each situation the effect of one cell is greatest on

n adjacent cell and decreases on cells further away. Taking into

ccount the spatial organization of the crypt, we therefore assume

hat SCs can only control SCs and TACs; that TACs can only control

ACs, SCs, and DCs; and that DCs can only control DCs and TACs. It

ollows that 11 out of the 20 control networks have local controls,

ee Fig. 4 . We used Fig. 2 to select local controls, and the results

re independent of the values of W . 

hoose networks with stable solution and measured means and vari-

nces. Let us assume that all the control functions are linear (or
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Fig. 4. The outcome of the selection algorithm for the constant death networks of 

Figure 2 with W = 0 . 03 . 
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onsider the linearization of nonlinear controls, see Appendix A ),

nd the death rate of DCs is constant in our analysis (this assump-

ion is relaxed in Appendix C ). Using Eqs. (5) –(6) as constraints, we

efine linearized control functions as 

 1 = L 0 ( 1 + a L 1 i 1 + b L 1 i 2 + c L 1 i 3 ) , (17) 

 1 = 

1 

2 

( 1 + a P 1 i 1 + b P 1 i 2 + c P 1 i 3 ) , (18) 

 2 = L 0 

(
D 0 

L 0 
− 1 

)
( 1 + a L 2 i 1 + b L 2 i 2 + c L 2 i 3 ) , (19) 

 2 = 

1 

2(1 − L 0 /D 0 ) 
( 1 + a P 2 i 1 + b P 2 i 2 + c P 2 i 3 ) , (20) 

 = D 0 , (21) 

here coefficients a, b , and c with the appropriate subscripts are

onstants. Functions ( 17 –20 ) are the most general linear functions

ompatible with identities ( 5 - 6 ). We however are interested in

minimal controls”, which is a restricted subset of such functions.

t was shown in Komarova (2013) that for stability of a three-

ompartment system, it is necessary to have at least three control

oops, and all three populations must be involved in the control.

here are exactly 20 systems with minimal control (that is, only

 control loops) with constant death terms, see Fig. 2 (the non-

onstant death terms are included in networks of Fig. 3 and ana-

yzed in Appendix C ). Each of these control networks is character-

zed by exactly one nonzero coefficient a , one nonzero coefficient

 , and one nonzero coefficient c in system ( 17 –20 ). For example,

he topmost network in the left column of Fig. 2 contains con-

rol of SC divisions by SCs, control of SC differentiation probabil-

ties by TACs, and control of TAC divisions by DCs. This means that

he corresponding linear system of controls, Eqs. (17) –(20) , con-

ains nonzero coefficients 

 L 1 , b P 1 , c L 2 , 
ith the rest of coefficients being zero. For each minimal control

etwork, there are 5 unknown constants: the equilibrium values

 0 , D 0 , and the nonzero controls ( a, b, c ). Let us denote 

 = L 0 /D 0 , 

here q is the ratio between the division rate of the SCs and the

eath rate of DCs at equilibrium. Eqs. (5) and (6) imply that q ∈ (0,

/2) (since the probability P 2 ≤ 1). Further, by rescaling the time

nit, we can set D 0 = 1 . Therefore, only four unknown coefficients

emain: 

, b, c, q. 

et us use definitions ( 17 –20 ) and solve the linear algebraic sys-

em of equations given by (16) . In particular, we can obtain the

xpressions for the three variances y 11 , y 22 , and y 33 . For each con-

rol network, these expressions depend on the unknowns q, a, b ,

nd c . 

Using the data on the numbers of dividing and non-dividing

ells for a given value of W , we can compute the numerical distri-

utions of SCs, TACs, and DCs, and measure their means and vari-

nces. In this study we will focus on the case: W = 0 . 03 (most of

he dividing cells are TACs). 

Let us pick a control network, and also fix a q value; in our

imulations we took q = 0 . 1 , 0 . 2 , 0 . 4 , 0 . 5 . For each q value, we have

 system of equations 

 11 = V ar(I 1 ) exp , y 22 = V ar(I 2 ) exp , y 33 = V ar(I 3 ) exp , 

here the left hand sides are functions of coefficients ( a, b, c ) (un-

er fixed control network and the q value), and the right hand

ides are numerically measured values of the cell number vari-

nces (under the fixed value of W , the fraction of active SCs among

ll dividing cells). This linear system of three equations with three

nknowns can be solved to find the unknown controls a, b, c , and

nly the networks that have real stable solutions for at least one

 value will be considered. A Mathematica file is provided in the

upplement that accomplishes this task. 

In conclusion, networks #6, 17, 20 do not give stable solutions,

nd therefore are eliminated. The other 8 listed in Fig. 4 give real-

stic stable solutions. 

To confirm the theoretical results, for each network, we then

un numerical simulations with the coefficients obtained as de-

cribed above. Note that the analysis presented here is local, in

he sense that only the derivatives of the control at the equilib-

ium can be determined. We do not have any information on the

lobal shapes of the control functions L 1 ( I 1 , I 2 , I 3 ), L 2 ( I 1 , I 2 , I 3 ), etc.

 numerical simulation requires further assumptions on the actual

unctional form for all the four control functions. The simplest way

s to use linear functions, Eqs. (17–20) , for controls for all values

f the arguments (cell numbers). This assumption works for many

ontrol networks, but sometimes it was observed that stochastic

eviations of cell numbers from the mean forced the linear con-

rol function to take values outside the realistic range (e.g. a divi-

ion rate may become negative). In such cases we used nonlinear

unctions which have the correct values of the derivatives at the

quilibrium, but are defined in the biologically relevant range, see

ppendix A . A typical simulation of the control dynamics for net-

ork #1 is presented in Fig. 5 . The variance of the number of each

ell type, is similar to the measured values reported in Bravo and

xelrod (2013) . 

hoose networks with appropriate dynamics of recovery from pertur-

ation. Next, we perform the eigenvalue analysis of the networks

o study the injury recovery dynamics. The recovery dynamics of

he measured data are oscillatory, see e.g. Paulus et al. (1992) .

heoretically, we study the eigenvalues of the linearized system

round the equilibrium for each network. Using the deterministic
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Fig. 5. A typical simulation of network #1. Simulation starts at the experimentally measured means and finishes when the number of time steps reaches 2 · 10 7 . Here we 

used q = 0 . 1 and W = 0 . 03 ; a set of control coefficients which produces means and variances similar to those measured in human crypts was determined by solving system 

(16) . For the nonlinear control function see Appendix A . 
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Eqs. (2) –(4) , we can compute the Jacobian of each network (evalu-

ating at the steady state) and its eigenvalues, thus obtain the con-

dition of stability and oscillatory behavior, see Appendix B for de-

tails. Complex eigenvalues indicate robust oscillations. The results

are listed as follows (see Eqs. (17) –(20) for the notations): 

• system 1: The system is always stable, and it is oscillatory if

a L 1 < 

b P 1 
4 . 

• system 2: The system is always stable, and it is oscillatory if

a L 1 < 

b P 1 
4 . 

• system 8: The system is always stable but not oscillatory. 
• system 9: The system is always stable but not oscillatory. 
• system 12: The system is always stable but not oscillatory. 
• system 13: The system is always stable, and it is oscillatory if

a P 2 > − L 0 b P 1 
4 D 0 

. 

• system 18: The system is stable if b L 2 > 

D 0 c P 2 
L 0 

, and it is oscilla-

tory if 4 b L 2 c P 2 D 

2 
0 

> (L 0 b L 2 + D 0 c P 2 ) 
2 . 

From this analysis we conclude that networks #8, 9 and 12 do

not have appropriate oscillatory dynamics and are therefore elimi-

nated. 

Choose networks with observed intracrypt correlations of cell types.

From the measurements, the sum of the number of SC’s (total

stem cells) and TACs is not correlated with the number of DCs,

see Fig. 6 (a). For each candidate network, we evaluate the absence

of this correlation. We do not need to investigate correlations be-

tween TACs and SCs, because these numbers are strongly corre-

lated due to the assumption that a fraction W of dividing cells is

SCs and (1 − W ) is TACs. We use W = 0 . 03 , from Section 2.1 . 

From the previous step, the remaining networks are: 1, 2, 5,

13, and 18. For each of these networks, we perform simulations

of the dynamics in homeostatic conditions, Fig. 6 (b–f). Each sim-

ulation starts at the experimentally measured mean and finishes

when time steps reach 2 · 10 7 . Each data point in Fig. 6 is collected

every 4 · 10 5 time steps: the x -value is the sum of SC and TAC pop-

ulation numbers, and y-value is the DC population number (that is,
or each panel in 6 , we plotted 50 data points). Using the statisti-

al package R, we can check the correlation for each network: we

t a linear regression model of the simulated DCs against the sum

f simulated SCs and TACs. We then perform hypothesis testing on

he linear relation: suppose the model is expressed as y = αx + β,

hen the null hypothesis is H 0 : α = 0 , and the alternative hypoth-

sis is H a : α � = 0. P-values of α can be obtained from R. A p-value

ess than 0.05 indicates that a linear correlation was unlikely due

o chance, and a p-value greater than 0.05 indicates that the cor-

elation could have been due to chance. The result is presented in

ig. 6 , and p-values are given in the caption of the figure. 

From this part of the analysis we conclude that networks #5,

3, and 18 have significant correlations between the number of

Cs and sum of SCs and DCs, unlike the observed data, and there-

ore are eliminated. However, for networks #1 and #2, the intra-

rypt correlations are not significant, as are the observed data not

ignificant, and they are retained. 

evisit injury recovery dynamics. Besides the eigenvalue analysis,

e also look at the actual trajectories of the cell numbers following

n injury. Injury recovery measurements are available in the liter-

ture, see e.g. Paulus et al. (1992) , where the cell numbers in the

ouse small intestine were measured following a perturbation of

omeostasis of cell dynamics by a dose of radiation. Further, Hua

t al. (2012) show very similar results, see Fig. 6(b) in their paper

hat depicts oscillations of DNA synthesizing cells in mouse intesti-

al crypts after irradiation. 

We observe that oscillation trajectories in recovery dynamics

eature a certain overshoot followed by diminishing oscillations

round the mean number of the cells. In particular, Fig. 1(c) in

aulus et al. (1992) shows recovery oscillation of (clonogenic) stem

ells, and Fig. 1(d) in the same paper shows the recovery of to-

al cells per crypt. Even though direct measurements of oscillatory

rypt recovery dynamics are only available for murine crypts, we

xpect that similar behavior will be observed in human crypts, see

lso simulations of the human colon crypt in Bravo and Axelrod

2013) , where Fig. 5 shows oscillatory behavior similar to that of
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Fig. 6. The plots of DCs vs. the sum of SCs + TACs. (a) is for the experimental data, and p-value = 0 . 64 (linear correlation coefficient); (b) is for network 1 when q = 0 . 1 , 

and p-value = 0 . 598 ; (c) is for network 2 when q = 0 . 1 , and p-value = 0 . 661 ; (d) is for network 5 when q = 0 . 1 , and p-value = 0 . 006 ; (e) is for network 13 when q = 0 . 2 , 

and p-value = 0 . 021 ; (f) is for network 18 when q = 0 . 3 , and p-value = 4 . 89 × 10 −6 . The straight lines indicate the fitted regression line for each. Please note that different 

values of q are used in the subfigures (b–f) because different networks describe the measured mean and variances for different subsets of the possible q values. 
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u  
ouse crypts. Therefore, we argue that a reasonable control net-

ork should exhibit oscillatory behavior both in the numbers of

tem cells and in the total number of cells. 

In the previous stage of the algorithm, we have used the eigen-

alue analysis to study the oscillatory behavior of each candidate
etwork, and now we check if each remaining network produces

 recovery trajectory that is qualitatively similar to the measure-

ents. For each network, we start a numerical simulation at the

tate of equilibrium. We reduce the total cell number to 0.8 of the

nperturbed value, run the simulation when the time steps reach
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Fig. 7. The simulated recovery trajectories of network #1 when W = 0 . 03 and q = 0 . 1 . The red lines indicate the measured equilibrium values of cell numbers. The behavior 

of network 2 is qualitatively similar. The recovery kinetics are oscillatory. 
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2 × 10 6 , and then plot the number of cells over the time course.

The numerical results for network #1 are presented in Fig. 7 (for

network #2, the dynamics look very similar and are not shown).

We observe that networks #1 and #2, each produce recovery dy-

namics of total cell numbers similar to the experimentally ob-

served recovery dynamics reported in Paulus et al. (1992) and Hua

et al. (2012) . In particular, both the number of SCs and the total

number of cells are characterized by oscillatory recovery trajecto-

ries consistent with the experiments. In contrast with that, other

(non-oscillatory) networks exhibit qualitatively different behavior,

which is illustrated by the example of network #12, see Fig. 8 . 

A note on the variance of SCs. The calculated mean number of SCs

in the crypts was only slightly larger than the standard devia-

tion. As long as parameter W (the fraction of dividing cells that

are active SC) was not too much lower than its calculated mean,

the system under the minimal controls studied here was able to

maintain robust homeostasis. If we used W = 0 , however, we ob-

served that under the parameter values that produced the exper-

imentally measured variance, the SCs were subject to relatively

frequent extinction events. This observation allows several inter-

pretations. (i) If we were to interpret the inter-crypt variation as

an indicator of temporal intra-crypt variation, and assumed that

 = 0 , the minimal control networks studied here are not enough

to explain the system behavior, and additional processes such as

TAC de-differentiation activated by SCs falling below a certain level

would have to be included. (ii) Alternatively, it is possible that the

relatively high inter-crypt variance of the SC numbers is a conse-

quence of inter-crypt parameter variation, and the actual temporal

homeostatic variability of crypts in lower than this. (iii) The value

of W does not fall much below the measured mean of W = 0 . 03 ,

in which case no further model modifications are necessary. 
b

ummary of findings. Of the 20 possible constant-death control

etworks ( Fig. 2 ), only networks #1 and #2 have stable dynam-

cs that reproduce the measured mean and variance of each cell

ype, exhibit the correct intra-crypt correlation patterns, and show

ealistic oscillatory recovery dynamics. Further, as demonstrated in

ppendix C , out of the 12 additional, non-constant death control

etworks ( Fig. 3 ), only network #27 satisfies the same criteria. The

hree networks, #1,#2, and#27, are shown in Fig. 9 . 

. Results and discussion 

Investigating possible regulation of stem cell dynamics in colon

nd intestinal crypts has been a popular subject for computational

nd mathematical modeling ( Carulli et al., 2014; De Matteis et al.,

013; Kershaw et al., 2013; Van Leeuwen et al., 2006 ). This is be-

ause crypts have a few distinguishable cell types organized in a

ierarchy of fewer than 2500 cells that maintain homeostasis, and

an recover after perturbation. It is the kind of dynamical system

hat lends itself to formulating possible regulatory models, and

esting the model behaviors by comparing simulation results to ex-

erimental observations of real biological crypts. 

In this study we investigated the 32 theoretically possible min-

mal control networks for a three-compartment system consisting

f SCs, TACs, and DCs. We used the data obtained on 49 human

olonic crypts, where the numbers of dividing and non-dividing

ells were measured. From this information assuming that the frac-

ion W of all dividing cells were active SCs, and fraction 1 − W 

ere TACs, we obtained the distributions of the three cell types.

sing this information as well as observations of crypt recovery

rom injury and intra-crypt correlations, we devised an algorithm

hich allowed us to test all 32 networks. All but three were ex-

luded based on their inconsistency with the measured data. In

articular we found that control networks #1, #2, and #27 are the

est systems that describe the measured data, see Fig. 9 . 
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Fig. 8. The simulated recovery trajectories of network #12 when W = 0 . 03 and q = 0 . 1 . The red lines indicate the measured equilibrium values of cell numbers. The recovery 

kinetics are not oscillatory. 

Fig. 9. The three minimal control networks selected by our algorithm as candidate networks for colonic crypt lineages. 
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A conceptually surprising outcome is that an argument about

he interactions among the compartments of a stem cell lineage

an be made based on only a very limited set of measurements,

hich does not contain any direct assessment of signaling mecha-

isms. The biological input consists of quantitative static measure-

ents (the sample means and the variances of the cell numbers

ogether with their correlations) and qualitative dynamic measure-

ents (the existence of oscillations in tissue recovery process).

ased on these pieces of evidence, and on our analysis of math-

matically possible networks, we were able to restrict the number

f possible regulatory networks to only three. 

The resulting candidate networks #1 and #2 ( Fig. 2 ) are among

nly three networks (among the 32 networks) that consist entirely

f negative loops (network #6 is the third such network, and it

as eliminated at the first step of the analysis because it failed

o produce a stable root with the means and variances matching

he observations, see Fig. 4 ). Network #27 is one of only two net-

orks (among those where death of DCs is controlled, Fig. 3 ) that

ontain two negative control loops (non-local network #29 is the

econd one). In general, negative feedback controls are common in

iological systems at many levels, from repressor protein effects

n transcription of the lac operon in DNA to the effect of insulin

n glucose in the blood. Negative controls have also been invoked
o model other cell lineages ( Lo et al., 2009; Mangel and Bonsall,

008 ). Novák and Tyson (2008) emphasize the important role that

egative signaling loops play in oscillatory behavior in a wide va-

iety of biological systems. 

We further notice that the candidate control networks iden-

ified by our algorithm are all very similar: out of three control

oops, two occur in all the three networks. These are: (1) the neg-

tive regulation of SC division rate by the cells in the SC compart-

ent, and (2) the negative regulation of SC differentiation proba-

ility by the TAC compartment. These control loops have a simple

xplanation through the mechanism of crowding: having too many

Cs prevents them from further divisions, and too many TACs re-

tricts differentiation divisions in favor of proliferation divisions.

he DCs in the three candidate networks perform different tasks:

hey exhibit negative control of divisions (#1) and differentiations

#2) of TACs, and they regulate their own death (#27). Our current

lgorithm cannot distinguish between these three possibilities; fur-

her biological information may further narrow the set of candi-

ate control networks. 

Understanding the design principles of control networks is a

ascinating research direction, to which this work can contribute.

iven the results of our analysis, we hypothesize that perhaps the

attern of two negative control loops that occurs in all the three
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networks selected by our algorithm may be important for effective

control of hierarchically organized tissues such as crypts. 

This work should be considered more of a demonstration of

principle than a final result. For example, we cannot conclude that

one of the networks #1, #2 and #27 is definitely the one that

acts in human colonic crypts. We have only tested the minimal (3-

control) regulatory networks. It is still possible that a more com-

plicated network with more than three essential control mecha-

nisms is in place. All we can say is that we found the two sim-

plest (in the sense of having the minimal number of loops) con-

trol networks that are compatible with (both dynamic and static)

observations in colonic crypts. The same holds for additional cel-

lular processes that were not included in the present model, such

as cell de-differentiation. The methods proposed here however can

be extended to such systems, see Sun et al. (2016) . The process

of de-differentiation can be especially relevant for the system in

question, as the measured inter-crypt standard deviation of the

SC numbers is not much smaller than their mean, and in certain

regimes it may be necessary to include TAC de-differentiation to

compensate for stochastic loss of SCs. 

In principle, SCs are capable of three types of division: (1)

asymmetric divisions, where one of the daughter cells retains the

stemness property while the other is more differentiated; (2) sym-

metric proliferation, where both offspring are stem cells, and (3)

symmetric differentiation, where both offspring have higher degree

of differentiation compared to the dividing cell. A large number of

studies has been devoted to understanding the symmetry of SC di-

visions, and it appears that in some organisms SCs divide mostly

asymmetrically, and in others both division types happen, depend-

ing on the specific context. The prevalence of symmetric divisions

depends on the tissue. For example, in the mouse epidermis, it

has been reported that about 20% of SC divisions are symmetric

in the ear and tail epidermis, while 40% of SC divisions are sym-

metric in the paw epidermis. In the epidermis it has been argued

in the recent years that SCs divide predominantly asymmetrically

( Clayton et al., 2007; Doupé et al., 2010; Lim et al., 2013; Mascré

et al., 2012 ). In crypts, however, SC symmetrical divisions play an

important role ( Barker, 2014; Lopez-Garcia et al., 2010; Simons and

Clevers, 2011; Snippert et al., 2010 ). Therefore, in the present paper

we have used the model with symmetric divisions (types (2) and

(3) above). Again, asymmetric divisions can be added by using the

present methodology, see Yang et al. (2015a ). 

In this paper we used the measurements of Ki-67, where the

positively stained cells were identified as dividing, and the non-

stained cells as non-dividing, to study cellular control networks.

Different cell types (such as SCs, TACs, DCs) control various cell

fate decisions. In order to convert our measurements into informa-

tion on the numbers of SCs, TACs, and DCs, we used the assump-

tion that some stem cells are quiescent and others are active. Li

and Clevers (2010) has reviewed evidence for this understanding

of stem cells. They describe evidence for the co-existence of qui-

escent and active stem cell populations in the hair follicle, small

intestine, and bone marrow. The model includes interconversion

between the two types of stem cells, with quiescent stem cells re-

plenishing damaged active stem cell population, and the possibility

of active cells converting to quiescent stem cells. The number of

quiescent cells are regulated by negative feedback from the active

stem cells and/or their progeny. This model extends the previous

models that have described each cell in the stem cell population

as having a probability of not dividing, or dividing symmetrically

to produce more stem cells or asymmetrically to produce a stem

cell and a transient amplifying cell ( Humphries and Wright, 2008 ).

Our model only includes spatial considerations in the most

rudimentary sense. We exclude the networks with nonlocal con-

trol, bearing in mind the geometry of the crypts. A more detailed,

spatial model can be designed to test if our conclusions still hold.
 limitation of such numerical studies is that complex spatial mod-

ls do not allow for analytical solutions, and a comprehensive pa-

ameter study of the kind presented in our algorithm cannot be

mplemented. The advantage of our approach is that we obtained

nalytical expressions for the means and the variances of numbers

f each cell type, and this allowed us to recover the values for the

ontrols, given the experimentally obtained cell population mea-

urements. 

In conclusion, we have compared the simulated behavior of sev-

ral possible regulatory networks with the numbers of cell types

easured in human biopsy specimens, and have determined that

he most likely form of regulation is by local control of stem cells

n their own division, transient amplifying cells on the differen-

iation of stem cells, and differentiated cells on the division and

ifferentiation of transient amplifying cells. 
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ppendix A. Nonlinear control functions 

For some parameter values it was possible to assume that the

ontrols are described by functions ( 17 –20 ), as long as the prob-

bility values (functions P 1 and P 2 ) are within the interval [0, 1],

nd the rate functions ( L 1 and L 2 ) are nonnegative. If in the course

f stochastic dynamics the functions given by Eqs. (17) –(20) fall

utside these bounds, we implemented a rule where the functions

ere replaced by zeros or ones (that is, values inside the bound-

ries). For a set of parameters (specifically, for relatively small val-

es of W ), this rule resulted in a system failure, as depicted in

ig. 10 for network #1, W = 0 . 03 . As observed, SCs stop dividing

fter around some time; that is L 1 ≤ 0. In the following example

e explore what happens. Using Eq. (17) , one can see that the ab-

ormal situation is due to the form of function L 1 . We have for

ontrol system #1: 

 1 = L 0 (1 + a L 1 i 1 ) , a L 1 < 0 ; (22)

 1 = 

1 

2 

(1 + b P 1 i 2 ) , b P 1 < 0 ; (23)

 2 = (D 0 − L 0 )(1 + c L 2 i 3 ) , c L 2 < 0 ; (24)

here i 1 , i 2 and i 3 are given by Eq. (9) . We observe that L 1 drops

elow zero when the SC number is sufficiently large. In the case

f this control system, the dynamics often drives the population

f stem cells toward such values where L 1 drops below zero. In

ther words, linear function L 1 attains biologically unrealistic val-

es within the range of normal fluctuations of x . Therefore, we

eed to replace the linear function L 1 with a nonlinear function,

hich remains biologically relevant within the range of x that is

ttained regularly by the stochastic system. Notice that such alter-

ative, nonlinear function L s 
1 

should have the following properties:

• L s 
1 

depends only on i 1 , and it is decreasing; 

• L s 
1 

∣∣∣
i 1 =0 

= L 0 and 

∂L s 
1 

∂ i 1 

∣∣∣
i 1 =0 

= L 0 a L 1 ; 

• s 

i 1 →∞ 1 

http://dx.doi.org/10.13039/100007558
http://dx.doi.org/10.13039/100000009
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Fig. 10. A simulation of network #1 when q = 0 . 1 and W = 0 . 03 . The left figure is for linear function of L 1 described by Eq. (17) , and the right figure is for the nonlinear 

control of L 1 (see Appendix A ), whereas we hold other control functions as linear in both cases. 
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Fig. 11. The outcome of the selection algorithm for the non-constant death net- 

works of Fig. 3 with W = 0 . 03 . 
One suitable choice of the nonlinear function can be an expo-

ential decay function: L s 
1 

= L 0 e 
a L 1 

i 1 . As we observed from Fig. 5 ,

etwork #1 behaves as expected with the nonlinear control L s 
1 
. For

ther networks, we perform a similar procedure whenever the as-

umption of linearity is violated. 

ppendix B. Eigenvalues Analysis 

We first illustrate the eigenvalues analysis by computing eigen-

alues on system 1. Using Fig. 2 and the notations in Eqs. (17) –(20) ,

ystem 1 can be characterized as: 

∂L 1 
∂x 1 

= 

L 0 a L 1 
ε

< 0 , 
∂L 2 
∂x 3 

= 

(D 0 − L 0 ) c L 2 
ε

< 0 , 
∂P 1 
∂x 2 

= 

b P 1 
2 ε

< 0 . 

he Jacobian of the system (evaluating at the steady state) can be

btained using the deterministic Eqs. (2) –(4) : 

 = 

⎡ 

⎣ 

0 − L 0 b P 1 
ε 0 

L 0 a L 1 
ε

L 0 b P 1 
ε − L 0 c L 2 

ε

0 0 

D 0 c L 2 
ε

⎤ 

⎦ . 

y solving the roots of the characteristic polynomial | J − λI| , we

btain the eigenvalues: 

1 = 

D 0 c L 2 
ε

, λ2 , λ3 = 

L 0 b P 1 ±
√ 

L 0 b P 1 (L 0 b P 1 − 4 L 0 a L 1 ) 

2 ε
. 

t follows that system 1 is always stable (all eigenvalues have neg-

tive real part), and it is oscillatory if L 0 b P 1 − 4 L 0 a L 1 > 0 (complex

igenvalues indicate robust oscillations); that is, a L 1 < 

b P 1 
4 . 

We then performed the same analysis for system 2, 8, 9, 12, 13

nd 18. The results are summarized below: 

• system 2: 
∂L 1 
∂x 1 

= 

L 0 a L 1 
ε < 0 , 

∂P 1 
∂x 2 

= 

b P 1 
2 ε < 0 , 

∂P 2 
∂x 3 

= 

D 0 c P 2 
2 ε(D 0 −L 0 ) 

<

0 

– Eigenvalues are λ1 = 

D 0 c P 2 
ε , λ2 , λ3 =

L 0 b P 1 
±
√ 

L 0 b P 1 
(L 0 b P 1 

−4 L 0 a L 1 
) 

2 ε . 

– The system is always stable, and it is oscillatory if a L 1 < 

b P 1 
4 .

• system 8: 
∂L 1 
∂x 2 

= 

L 0 b L 1 
ε < 0 , 

∂L 2 
∂x 3 

= 

(D 0 −L 0 ) c L 2 
ε < 0 , 

∂P 1 
∂x 1 

= 

a P 1 
2 ε >

0 

– Eigenvalues are λ1 = 

2 D 0 c L 2 
ε , λ2 = − L 0 a P 1 

ε , λ3 = 

L 0 b L 1 
ε . 

– The system is always stable but not oscillatory. 
• system 9: 
∂L 1 
∂x 2 

= 

L 0 b L 1 
ε < 0 , 

∂P 1 
∂x 1 

= 

a P 1 
2 ε > 0 , 

∂P 2 
∂x 3 

= 

D 0 c P 2 
2 ε(D 0 −L 0 ) 

<

0 

– Eigenvalues are λ1 = 

D 0 c P 2 
ε , λ2 = − L 0 a P 1 

ε , λ3 = 

L 0 b L 1 
ε . 

– The system is always stable but not oscillatory. 

• system 12: 
∂L 2 
∂x 3 

= 

(D 0 −L 0 ) c L 2 
ε < 0 , 

∂P 1 
∂x 1 

= 

a P 1 
2 ε > 0 , 

∂P 2 
∂x 2 

=
D 0 b P 2 

2 ε(D 0 −L 0 ) 
> 0 

– Eigenvalues are λ1 = − L 0 a P 1 
ε , λ2 , λ3 =

−D 0 (b P 2 
−c L 2 

) ±
√ 

[ D 0 (b P 2 
+ c L 2 )] 2 −4 D 0 L 0 b P 2 

c L 2 
2 ε . 

– The system is always stable but not oscillatory. 

• system 13: 
∂L 2 
∂x 3 

= 

(D 0 −L 0 ) c L 2 
ε < 0 , 

∂P 1 
∂x 2 

= 

b P 1 
2 ε < 0 , 

∂P 2 
∂x 1 

=
D 0 a P 2 

2 ε(D 0 −L 0 ) 
> 0 
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Fig. 12. The plots of DCs vs. the sum of SCs + TACs for two non-constant death networks. (a) Network 27 when q = 0 . 2 , and p-value = 0 . 9 . (b) Network 28 when q = 0 . 2 , 

and the p-value is 0.0 0 0328 (other values of q also produced p < 0.05, not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

A  

A  

 

A  

 

B  

 

 

 

B  

 

B  

 

 

 

 

C  

D  

 

 

D  

D  

 

E  

E  

 

E  

 

E  

 

E  

 

F  

 

 

F  
– Eigenvalues are λ1 = 

D 0 c L 2 
ε , λ2 , λ3 =

L 0 b P 1 
±
√ 

L 0 b P 1 
(L 0 b P 1 

+4 D 0 a P 2 
) 

2 ε . 

– The system is always stable, and it is oscillatory if a P 2 >

− L 0 b P 1 
4 D 0 

. 

• system 18: 
∂L 2 
∂x 2 

= 

(D 0 −L 0 ) b L 2 
ε > 0 , 

∂P 1 
∂x 1 

= 

a P 1 
2 ε > 0 , 

∂P 2 
∂x 3 

=
D 0 c P 2 

2 ε(D 0 −L 0 ) 
> 0 

– Eigenvalues are λ1 = − L 0 a P 1 
ε , λ2 , λ3 =

(D 0 c P 2 
−L 0 b L 2 

) ±
√ 

(L 0 b L 2 
+ D 0 c P 2 ) 

2 −4 D 2 
0 

b L 2 
c P 2 

2 ε . 

– The system is stable if b L 2 > 

D 0 c P 2 
L 0 

, and it is oscillatory if

4 b L 2 c P 2 D 

2 
0 

> (L 0 b L 2 + D 0 c P 2 ) 
2 . 

Appendix C. Analysis of non-constant death rate minimal 

networks of Figure 3 

We followed the steps of the algorithm described in the main

text to analyze the 12 minimal networks depicted in Fig. 3 . The

consecutive elimination steps are shown in Fig. 11 . First, we elim-

inated the non-local networks, which excluded networks 29–31.

Out of the remaining networks 21–28, all eight allow for control

coefficients compatible with the measured means and variances.

The stochastic analysis is based on the linearization of the control

functions given by Eqs. (17) –(20) and the equation for the death

rate, 

D = D 0 ( 1 + a D i 1 + b D i 2 + c D i 3 ) . 

Analysis of eigenvalues shows that networks #21, #22, and #23 are

non-oscillatory. Networks #24 and #25 have complex eigenvalues,

but the solution for the stem cell component is non-oscillatory.

Similarly, network #26 has oscillatory eigenvalues but the total

number of cells is non-oscillatory. Finally, networks #27 and #28

both have complex eigenvalues, and both the stem cells and to-

tal numbers of cells have oscillatory recovery dynamics. Of these

two remaining networks, #28 has statistically significant intra-

crypt correlations, while #27 does not, see Fig. 12 . Further, network

#27 exhibits oscillatory recovery dynamics similar to that depicted

in Fig. 7 . Therefore, we conclude that the only remaining candidate

network is #27. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.jtbi.2017.06.033 . 
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