Title
Continuous Video Electroencephalographic (EEG) Monitoring for Electrographic Seizure Diagnosis in Neonates: A Single-Center Study

Permalink
https://escholarship.org/uc/item/5wq1r4zq

Journal
JOURNAL OF CHILD NEUROLOGY, 31(3)

ISSN
0883-0738

Authors
Wietstock, SO
Bonifacio, SL
Sullivan, JE
et al.

Publication Date
2016-03-01

DOI
10.1177/0883073815592224

Peer reviewed
Continuous Video Electroencephalographic (EEG) Monitoring for Electrographic Seizure Diagnosis in Neonates: A Single-Center Study

S. O. Wietstock, MD1,2, S. L. Bonifacio, MD2, J. E. Sullivan, MD1,2, K. B. Nash, MD1,2, and H. C. Glass, MDCM, MAS1,2

Abstract
The objective of this study was to determine the diagnostic yield of continuous video electroencephalographic (EEG) monitoring in critically ill neonates in the setting of a novel, university-based Neonatal Neurocritical Care Service. Patient demographic characteristics, indication for seizure monitoring, and presence of electrographic seizures were obtained by chart review. Among 595 patients cared for by the Neonatal Neurocritical Care Service, 400 (67%) received continuous video EEG. The median duration of continuous video EEG monitoring was 49 (interquartile range = 22-87) hours. Electrographic seizures were captured in 105 of 400 (26% of monitored patients) and of those, 25 of 105 (24%) had no clinical correlate. In addition, 52 of 400 subjects (13%) were monitored due to paroxysmal events concerning for seizures, but never had electrographic seizures. Continuous video EEG monitoring helped confirm or rule out ongoing seizures in more than one-third of the cases. This finding helps to support the use of continuous video EEG in critically ill neonates.

Keywords
neurocritical care, infant, critical care, EEG, electroencephalogram, neonatal seizures, epilepsy, neonatal encephalopathy, hypoxic-ischemic encephalopathy

Received February 25, 2015. Received revised April 23, 2015. Accepted for publication May 22, 2015.

Continuous video electroencephalographic (EEG) monitoring is the gold standard for accurate detection of seizures, as well as seizure management in the intensive care unit.1-3 The clinical treatment paradigm in centers where continuous video EEG is not used is to treat those neonates with paroxysmal events that are suspicious for seizures, with or without EEG confirmation, with phenobarbital,4-7 and often for several months.8 Because paroxysmal events in neonates may or may not represent seizures,9 and electrographic seizures may have no discernable clinical correlate,10 this approach fails to adequately diagnose seizures and exposes neonates to possible harm, either by medication overuse for paroxysmal events that have no electrographic correlate or undertreatment of seizures without clinical manifestations. Monitoring with continuous video EEG can refine seizure management by accurately diagnosing electrographic seizures and optimizing treatment for those patients who truly need medication. Although continuous video EEG is recommended as the gold standard, there is limited evidence about the yield of capturing electrographic seizures via continuous video EEG in neonates with hypoxic-ischemic encephalopathy at 34% to 65%.11-13 Studies that examine a broader population in the pediatric14 and adult intensive care unit15 show that up to 20% to 30% of patients have electrographic seizures, many of which are subclinical and would remain undetected without monitoring.

The aim of this 4.5-year, single-center, observational study of 595 neonates admitted to the neonatal intensive care unit and evaluated by the Neonatal Neurocritical Care Service was to...
examine the yield of continuous video EEG since the initiation of our monitoring program, as well as to examine risk factors for electrographic seizures. Because the risk for seizures is highest in infancy,10 and neonates display frequent dissociation between clinical and electrographic events,10,17 we hypothesized that the proportion of neonates with seizures detected as part of clinical continuous video EEG monitoring would be at least as high as in pediatric and adult populations.

Methods

Subjects

Neonates admitted to the University of California, San Francisco, Neonatal Intensive Care Unit from July 2008 to December 2012, whom the Neonatal Neurocritical Care Service evaluated,18 were prospectively enrolled into a database and considered for inclusion in this study. Clinical data were compiled prospectively in a systematic manner using predetermined variable definitions. The UCSF Committee on Human Research approved waiver of consent and data collection. A subset of subjects was previously reported.12,19

Selection

All neonates monitored with continuous video EEG for clinical indications during the study period were evaluated by the Neonatal Neurocritical Care Service, entered into the Neuro-Intensive Care Nursery database, and formed the study cohort. Neonates who received continuous video EEG monitoring for nonclinical reasons (ie, research study) were excluded from the study. Indications for consultation by the Neonatal Neurocritical Care Service are described elsewhere.18 There were no other exclusion criteria.

Measurements

Continuous video EEG was applied by a trained technician according to the international 10-20 system. Modified montage amplitude-integrated EEG was displayed at the bedside and full montage was available for remote review by the neurophysiologist (Nicolet, Natus, San Carlos, CA). The decision to monitor with continuous video EEG was based on local guidelines and at the ultimate discretion of the attending neurologist and neonatologist. Guidelines for monitoring were developed by our service in 2008 and are similar to those published by the American Clinical Neurophysiology Society in 2011.4 Indications for continuous video EEG were as follows: (1) to assess the differential diagnosis of paroxysmal events (ie, patients with 1 or more clinical events that are concerning for seizure), (2) to detect seizures in high-risk populations (including acute encephalopathy, need for extracorporeal membrane oxygenation, intracranial infection or bleeding), and/or (3) to assess for background abnormalities during acute encephalopathy. Our guidelines included continuous video EEG for all neonates treated with therapeutic hypothermia from the time of admission through rewarming. The recommended duration of continuous video EEG monitoring was to capture suspected events, until at least 24 hours after resolution of electrographic seizures, and/or until the completion of rewarming for neonates undergoing therapeutic hypothermia. Among neonates who were monitored for a primary indication of paroxysmal event concerning for seizure, 44% had at least 1 event captured on EEG.

Table 1. Characteristics of 400 Neonates Seen by UCSF Neonatal Neurocritical Care Service From July 2008 to December 2012 Who Were Monitored Using Continuous Video EEG.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Video EEG monitoring (n = 400)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td>225 (56%)</td>
</tr>
<tr>
<td>Gestational age</td>
<td></td>
</tr>
<tr>
<td>Preterm (<34 wk)</td>
<td>61 (15%)</td>
</tr>
<tr>
<td>Late preterm (34 to <37 wk)</td>
<td>43 (11%)</td>
</tr>
<tr>
<td>Term (≥37 wk)</td>
<td>296 (74%)</td>
</tr>
<tr>
<td>Transferred from outside hospital</td>
<td>303 (76%)</td>
</tr>
<tr>
<td>Length of stay, d</td>
<td>10 (6-25)</td>
</tr>
<tr>
<td>Death before hospital discharge</td>
<td>55 (14%)</td>
</tr>
</tbody>
</table>

Abbreviations: EEG, electroencephalography; UCSF, University of California San Francisco.

*Values are given in terms of n (%) or median (interquartile range).

Patient demographic characteristics and indication(s) for monitoring were extracted from the database and chart review. Electrographic seizure diagnosis was based on clinical EEG reports written by neurophysiologists, who used a standard definition for electrographic seizures (repetitive, evolving, and stereotyped pattern, with a definite beginning and end, with a minimum duration of 10 seconds and a minimal amplitude of 2 microvolts). A neonatal neurologist (HCG) determined the seizure etiology after patient discharge from hospital and based on medical and nursing documentation of the clinical history, laboratory evaluations, electroencephalogram interpretation, and magnetic resonance imaging (MRI) results.

Seizure treatment was at the discretion of the treating neonatologist and neurologist and was typically initiated in the following clinical scenarios: after a clinical event that was suspicious for seizure that occurred prior to initiation of monitoring, or for confirmed electrographic seizure(s). Our clinical practice is to treat seizures with electrographic correlate, to discontinue seizure medications in neonates without confirmed electrographic seizures, and not to treat prophylactically or to achieve a specific target level.

Study data were collected and managed using REDCap (Research Electronic Data Capture) tools hosted at University of California, San Francisco.20

Analysis

Study results are presented as actual numbers with percentages, or medians with interquartile ranges. The chi-squared or Fisher exact test was used to examine the difference between 2 proportions. The Wilcoxon rank-sum test was used to compare medians. Statistical analyses were performed using Stata 12 (StataCorp, College Station, TX) and P values <.05 were considered significant.

Results

The Neonatal Neurocritical Care Service cared for 595 neonates over the 4.5-year observation period (July 2008 to December 2012). The majority was born at term (66%), and was referred from an outside hospital (67%). There was no sex preponderance among the population, and 14% died before hospital discharge. Therapeutic hypothermia was initiated in 30% of subjects and completed in 25%. Among the neonates seen by the Neonatal Neurocritical Care Service,
67% (400/595) received clinically indicated continuous video EEG (Table 1), including all those who received therapeutic hypothermia. Most children had 2 or more indications for monitoring: paroxysmal event concerning for seizure 192/400 (48%), encephalopathy 217/400 (54%), and high-risk population 267/400 (67%).

The median duration of continuous video EEG monitoring was 49 (interquartile range = 22-87) hours. Neonates who received therapeutic hypothermia for hypoxic-ischemic encephalopathy were monitored for a median duration of 85 (interquartile range = 71-96) hours.

Identification of Seizures

Electrographic seizures were captured in 105/400 subjects (26%) and, of those, 25/105 (24%) had electrographic seizures that never had a clinical correlate and never had clinical events prior to EEG monitoring that were suspicious for seizures. In addition, 52/400 (13%) of subjects had clinical events that were concerning for seizure, but had no seizures detected by continuous video EEG (either due to resolution of events prior to placement or continuation of events that had no EEG correlate). Phenobarbital was administered prior to monitoring in 93/400 (23%) of patients overall, and among 38/51 (75%) of patients who were monitored because of paroxysmal events suspicious for seizures but for whom continuous video EEG never confirmed seizures.

Electrographic seizure rates were assessed by common indications for monitoring (Table 2). Seizure occurrence by diagnosis is presented in Table 3. Seizures were most common in neonates with hypoxic-ischemic encephalopathy and stroke. Subclinical seizures were most often seen in neonates with hypoxic-ischemic encephalopathy.

Risk Factors for Electrographic Seizures

Neonates of primiparous mothers were more likely to have electrographic seizures (risk ratio = 1.4, 95% confidence interval = 1.2, 1.7; \(P < 0.005 \)), as were neonates who were monitored for an indication of paroxysmal event concerning for seizure (risk ratio = 1.4, 95% confidence interval = 1.0, 2.0; \(P = 0.04 \)), whereas mode of delivery, sex, transfer from a referring hospital, and gestational age at birth were not significantly associated with electrographic seizures.

Discussion

Two-thirds of a large cohort of 595 neonates evaluated by the Neonatal Neurocritical Care Service received continuous video EEG monitoring for a median duration of 2 days.\(^2^{21} \) The yield of monitoring was high: 25% had electrographic seizures and of those, a quarter had only subclinical seizures. Furthermore, continuous video EEG monitoring permitted exclusion of electrographic seizures in 13% of monitored subjects who had one or more clinical events prior to EEG monitoring that were concerning for seizures. Risk factors for electrographic seizures were maternal primiparity and paroxysmal event concerning for seizure as the indication for monitoring.

The yield of continuous video EEG was similar to what has been reported in adult and pediatric ICU populations undergoing clinically indicated continuous video EEG. Claassen et al.\(^1^5 \) evaluated 110 adult subjects who underwent continuous video EEG monitoring and reported a 19% detection rate, with the highest risk among those with coma, age <18 years, prior history of epilepsy, or convulsive seizures prior to monitoring. Abend et al.\(^1^4 \) reported electrographic seizures among 30% of pediatric patients consecutively admitted to the Pediatric Intensive Care Unit who received continuous video EEG at 11 sites across North America. Risk factors for electrographic seizures included younger age, abnormal interictal EEG, and clinical seizures prior to continuous video EEG monitoring or a diagnosis of epilepsy prior to monitoring. Three prior studies have reported seizure rates of 34% to 65% among neonates with hypoxic-ischemic encephalopathy who were treated with therapeutic hypothermia and monitored with continuous video EEG,\(^1^1^{13} \) which suggests that there may be a higher yield for monitoring among neonates receiving hypothermia.

Our findings have important clinical management implications: monitoring yielded results that could be used to guide
seizure medication management in more than one-third of subjects, including the 26% of neonates who had electrographic seizures and the 13% of neonates who had paroxysmal events but no electrographic seizures. For neonates with electrographic confirmation of seizures, monitoring permits accurate titration of medication to effect, as well as discontinuation of medication after resolution of acute symptomatic seizures. In neonates with paroxysmal events that have resolved without electroclinical dissociation, or have no electrographic correlate, monitoring may inform a decision to discontinue of medications. Because phenobarbital may be harmful to the neonate, monitoring may inform a decision to discontinue of antiseizure medications in patients without confirmed EEG seizures could, in theory, lead to improved functional outcomes. Our findings are similar to those from a broader pediatric population, which show that continuous video EEG affected clinical management in more than half of monitored children.

In 2011, the American Clinical Neurophysiology Society (ACNS) published continuous video EEG monitoring guidelines that are similar to those used by our center. Although continuous video EEG is widely recommended, most centers have failed to adopt the American Clinical Neurophysiology Society guidelines because of substantial barriers, which include the need for readily available specialized equipment, technicians, and neurophysiologists for rapid initiation and interpretation.

Although data were drawn from a large cohort of critically ill neonates, this study is not without its limitations. First, it was not possible to assess the impact of screening amplitude-integrated EEG, as charts did not contain formalized documentation of amplitude-integrated EEG results. Thus, we could not determine the added utility of continuous video EEG in addition to amplitude-integrated EEG, or vice versa. Second, it is possible that the population of monitored neonates was subject to screening bias as all subjects treated with therapeutic hypothermia for hypoxic-ischemic encephalopathy were monitored through cooling and rewarming. Thus, the distribution of seizure etiologies may overrepresent this subgroup. Third, detection of electrographic seizures was subject to the timing of continuous video EEG initiation and duration. As a result, it was not possible to confirm whether some of the clinical events that were suspicious for seizure may have had an electrographic correlate, as not all were captured on continuous video EEG. Fourth, subjects were entered into the database following consultation with our Neonatal Neurocritical Care Service. Subjects who were not identified as being at high risk for neurologic conditions may not have received consultation and monitoring, and therefore, it is possible that we did not capture some of the lowest risk subjects that are encompassed by the guidelines. Lastly, seizures were determined by clinical report rather than blinded review, which may slightly reduce the accuracy of seizure detection, including determination of seizures without clinical correlate. The potential benefit of this approach is that the results are more widely generalizable to clinical practice at other centers. In addition, the absolute value of the diagnostic yield is difficult to interpret at this time, as there is no clear acceptable threshold at which cost of screening and benefit of diagnosis balance.

Conclusion

The Neonatal Neurocritical Care Service monitored more than half of its patients with continuous video EEG according to guidelines that are similar to those recommended by the American Clinical Neurophysiology Society and detected electrographic seizures among 26% of monitored neonates. In addition, continuous video EEG allowed physicians to rule out the presence or persistence of electrographic seizures in an additional 13% of neonates who presented with paroxysmal events concerning for seizure. We believe that this diagnostic yield is clinically significant, supporting use of the American Clinical Neurophysiology Society guidelines so that medication use can be appropriately tailored to accurate seizure diagnosis. The current seizure management paradigm at most centers is to treat those neonates with clinical events that are suspicious for seizures, with or without confirmation of electrographic seizures, typically with phenobarbital and often for several months. This approach fails to adequately diagnose seizures, and exposes neonates to possible harm, either by medication overuse or undertreatment of seizures without clinical manifestations. More work is needed to determine the cost versus benefit of continuous video EEG, as well as its impact on long-term neurodevelopmental outcomes.

Acknowledgments

The authors would like to thank the UCSF CTSI K Scholars’ Work in Progress Group for their careful review of the manuscript. Jessica K. Vedder, MPH, assisted with data collection. Amy J. Markowitz, JD, provided editorial support.

Author Contributions

SOW, JS, and HCG developed the study concept and design. SOW and HCG drafted the manuscript and planned and performed the statistical analysis. All authors participated in interpretation of data, revised the manuscript for content, and approved the submitted manuscript.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: NIH/NINDS K23NS066137, the Pediatric Epilepsy Research Foundation and the Neonatal Brain Research Institute at UCSF support HCG. SLB is supported by K23NS082500. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Ethical Approval

The UCSF Committee on Human Research approved waiver of consent and data collection.
References