Lawrence Berkeley National Laboratory
Recent Work

Title
CRYSTAL STRUCTURE OF ACICULAR -Fe2O3 PARTICLES USED IN RECORDING MEDIA

Permalink
https://escholarship.org/uc/item/5wv2p67n

Authors
Ho, H.-M.
Goo, E.
Thomas, G.

Publication Date
1985-07-01
CRYSTAL STRUCTURE OF ACICULAR $\gamma$-$\text{Fe}_2\text{O}_3$ PARTICLES USED IN RECORDING MEDIA

H.-M. Ho, E. Goo, and G. Thomas

July 1985
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Crystal Structure of Acicular $\gamma$-Fe$_2$O$_3$ Particles Used in Recording Media

Huei-Min Ho, Edward Goo and Gareth Thomas
Department of Materials Science and Mineral Engineering,
University of California, Berkeley, CA 94720, U.S.A.

Abstract

$\gamma$-Fe$_2$O$_3$ particles have been examined by convergent beam electron diffraction to determine the crystal symmetry. The particles have a primitive lattice with an m3m point group and a cubic superstructure with lattice parameter approximately equal to three times the lattice parameter of the magnetite structure. This superlattice is a result of cation vacancy ordering. An order-disorder transition of the structure is observed in the electron microscope and is believed to be caused by electron radiation-enhanced diffusion.
Introduction

$\gamma$-Fe$_2$O$_3$ particles were developed more than half a century ago and today it is still the most widely used magnetic material for disks and tapes. $\gamma$-Fe$_2$O$_3$ is commonly prepared via the conversion of $\alpha$FeOOH or $\gamma$FeOOH to Fe$_3$O$_4$, by heating and reduction, followed by oxidation of the Fe$_3$O$_4$ to $\gamma$-Fe$_2$O$_3$. Fe$_3$O$_4$ which has a cubic inverse spinel structure converts to $\gamma$-Fe$_2$O$_3$ by removing $8/3$ Fe ions per unit cell. Because of its application as magnetic recording media, the structure of the material has been studied by many investigators. However, due to the fact that (1) the structure contains large amounts of cation vacancies so that it is sensitive to the environment, (2) the small particle size, and (3) the difficulty in growing single crystals for X-ray determination, unambiguous result for the structure have not yet been obtained.

Thus, it is the object in this study to utilize convergent beam electron diffraction (CBED) so as to allow examination of individual particles to be done so as to determine their crystal structure.

Experimental

In the present study, two commercial $\gamma$-Fe$_2$O$_3$ samples from different sources were obtained. Samples from the audio tapes were prepared by removing the plastic substrate with acetone solution and ion milling the magnetic
coating until it was electron transparent. Samples from the powder particles were prepared by dispersion on a carbon film coated electron microscope grid. The particles examined were about 0.2 - 0.45μm in length and with a length/diameter ratio of about 5. All microscopy and microdiffraction (CBED) was performed in a Philips EM 400 at 100 kv. A liquid nitrogen cold stage was used to acquire sharp CBED patterns and to avoid rapid contamination of the particle under the convergent beam. The convergent beam was about 400Å in diameter so allowing direct observations to be made of individual particles.

From a CBED zone axis pattern, crystal symmetry information can be obtained by observing the high order Laue zone (HOLZ) symmetry and by observing the internal structure of the zero order discs. Point group determination requires precise examination of the diffraction pattern symmetry and reference to the tables published by Buxton et. al.3 Space group determination can be achieved by observing the presence of the so-called line of dynamic absence which occurs in kinematically forbidden reflections and is related to the presence of a screw axis or a glide planes4.

Results and Discussion

Table 1 is a summary of previously published results5-15. It is not surprising that these results are not consis-
tent because the techniques employed can only provide average data of the material. Among the results, it is generally believed that $\gamma$-Fe$_2$O$_3$ has a tetragonal structure of $c/a = 3$ with $a = 8.33\text{Å}$ due to the fractional nature of iron cation vacancies.

X-ray data obtained in the present research were similar to those referenced in Table 1. As shown in Fig. 1, several non-magnetite extra lines such as 110, 210, 211 etc. were found. These extra lines indicate a reduction in symmetry from a face-centered lattice to a primitive lattice has occurred. This finding is also supported by electron microdiffraction results, as shown in Fig. 2, in which reflections forbidden by the fcc structure such as 100, 110, 210 etc. are allowed. For convenience, Fig. 2 is indexed in terms of a Fe$_3$O$_4$ unit cell.

Figs. 3 and 4 are primary CBED zone axis patterns of the same specimens as used for X-ray analysis. Both $\gamma$-Fe$_2$O$_3$ samples clearly showed the same crystal symmetry. Since the internal structure of the discs can not be seen, the crystal symmetry must be determined from analysis of the HOLZ symmetry. As shown in Fig. 5, the HOLZ symmetry is more easily resolved when smaller condenser lens apertures are used (e.g. 50μm). From Fig. 5, it can be seen that the $<100>$, $<110>$ and $<111>$ zone axis patterns show the 4mm, 2mm and 3m symmetries, respectively. From tables published by Buxton et. al, the point group can be unambiguously determined to be m3m. This means that
vacancies are ordered in such a way that the unit cell remains cubic. This crystal symmetry also rules out all of the space groups proposed by previous investigators\textsuperscript{5,11,12}. Due to the small particle size, no structure is visible in the zero order reflections and the space group of the material can not be determined. However, from the knowledge that $\gamma$-Fe$_2$O$_3$ has a primitive lattice and m3m point group, there are only 4 possible space groups: Pm3m, Pm3n, Pn3m and Pn3n.

The spacing between layers, $H$, in the reciprocal lattice can be calculated from the CBED pattern as

$$H = K - K \sqrt{1 - (R/L)^2}$$

where $K$ is the reciprocal of the incident electron wavelength, $R$ is the radius of high order laue ring, and $L$ is the camera length.

By using above equation, the $\gamma$-Fe$_2$O$_3$ unit cell is consistently derived from all three primary zone axis patterns to be cubic with lattice parameter approximately equal to three times that of the magnetite lattice parameter. Fig. 6 is a series of CBED $<110>$ patterns taken from the same area of a particle during prolonged exposure. Under the convergent electron beam, the ordered structure with lattice parameter of 25Å is observed to gradually change to a disordered structure with lattice parameter of 8.33Å. This result suggests disordering has occurred so that vacancies are no longer evenly distributed in each unit cell.
Similar order-disorder transitions have been observed in <100> and <111> zone axes as well and the resultant structure continues to have the m3m point group symmetry, as shown in Fig. 7.

The same pattern as Fig. 6(f) is obtained after re-examining the same area also in a liquid nitrogen cold stage several days later. This result confirms that the order-disorder transition is not due to local specimen heating by the electron beam.

Furthermore, at 100 kv, knock-on displacement damage is not likely to take place in an ionic material. However, electrons may transfer, by ionization damage, sufficient momentum to enhance cation diffusion, especially in a high defect density material such as γ-Fe₂O₃. In such cases the activation energy required for cation diffusion is low so that diffusion may be enhanced by electrons of energy even less than 100 kv. Thus, the mechanism of this order-disorder transition is considered to be due to radiation-enhanced diffusion of cations in the electron beam. No attempt has been made in this work to measure this quantitatively.

Conclusion

Because of the difficulties in obtaining information directly from individual particles, there are many discrepancies in the literature regarding the structure of
γ-Fe₂O₃ particles. In this study, whereby individual particles have been examined by electron microscopy and microdiffraction, the following conclusions have been made:

(1) γ-Fe₂O₃ particles prepared for commercial audio tapes have a primitive cubic lattice and m3m point group, therefore the space group of the material can only be one of four possible space groups.

(2) The material has a cubic superstructure of lattice parameter 25Å as a result of cation vacancy ordering.

(3) Order-disorder transition occurs by electron irradiation during observation. This transition is probably due to enhanced diffusion by ionization damage.

Acknowledgements
The authors would like to thank TDK company of Japan and Hercules Incorporated for supplying the γ-Fe₂O₃ particles used in this study. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Materials Sciences of the U. S. Department of Energy under contract No. DE-AC03-76SF00098.
Figure captions

Figure 1. X-ray diffraction traces of γ-Fe$_2$O$_3$ showing several extra lines.

Figure 2. Microdiffraction patterns of γ-Fe$_2$O$_3$ from (a) <100> and (b) <110> zone axis. Forbidden reflections for the fcc structure such as 100, 110, 210 etc. are allowed indicating the lattice is a primitive cubic.

Figure 3. CBED zone axis patterns from tape samples showing a cubic threefold superstructure, (a) <100>, (b) <110> and (c) <111> pattern.

Figure 4. CBED zone axis patterns from powder samples also showing a cubic threefold superstructure, (a) <100>, (b) <110> and (c) <111> pattern.

Figure 5. CBED patterns showing m3m point group symmetry, (a) <100>, (b) <110> and (c) <111> pattern.

Figure 6. <110> CBED patterns showing a transition from a ordered structure (a) to a disordered structure (f). The time lapse (a)-(f) is approximately 40 minutes.

Figure 7. Zone axis patterns of disordered structure showing the structure continues to have the m3m point group, following structure disordered.
References

1 Audio tapes are provided by the TDK company, 1-13-1 Nihonbashi Chyuohku, Tokyo, Japan, and powder particles are provided by Hercules Incorporated, Wilmington, DE 19899, U.S.A.


5 G. Z. Hägg, Phys. Chem. 29B, 95 (1935)


10 M. G. Chaudron, CR Acad. Sci., 214, 619 (1957)

11 P. B. Braun, Nature, 170, 1123 (1952)

12 G. W. Van Oosterhout and C. J. M. Rooijmans, Nature 181, 44 (1958)


<table>
<thead>
<tr>
<th>Author</th>
<th>Technique</th>
<th>Vacancy Distribution</th>
<th>Space Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hagg</td>
<td>X-ray diffraction</td>
<td>distribute uniformly in the cation sites</td>
<td>Fd3m</td>
</tr>
<tr>
<td>Verwey</td>
<td>same as above</td>
<td>same as above</td>
<td></td>
</tr>
<tr>
<td>Neel</td>
<td>saturation</td>
<td>only over the octahedral sites</td>
<td></td>
</tr>
<tr>
<td>Ferguson and Hass</td>
<td>neutron diffraction</td>
<td>only in the octahedral sites</td>
<td></td>
</tr>
<tr>
<td>Haul and Schoon</td>
<td>X-ray diffraction</td>
<td>vacancy ordering result in a primitive lattice</td>
<td></td>
</tr>
<tr>
<td>Chaudron</td>
<td>same as above</td>
<td>same as above</td>
<td></td>
</tr>
<tr>
<td>Braun</td>
<td>same as above</td>
<td>same as above</td>
<td>P4₁ with c/a=3</td>
</tr>
<tr>
<td>Van Oosterhout and Rooijmans</td>
<td>same as above</td>
<td>same as above</td>
<td>P4₁ 32</td>
</tr>
<tr>
<td>Ueda and Hasegawa</td>
<td>X-ray and neutron diffraction</td>
<td>occupy only four of the 16d sites</td>
<td></td>
</tr>
<tr>
<td>Takei and Chiba</td>
<td>X-ray diffraction</td>
<td>no vacancy ordering</td>
<td></td>
</tr>
<tr>
<td>Beudeulle et. al.</td>
<td>X-ray and electron diffraction</td>
<td>either with noncubic symmetry or with cubic superstructure with a threefold unit cell</td>
<td></td>
</tr>
</tbody>
</table>
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.