Using Zero-Emission Vehicles and Other Strategies to Improve Last Mile Deliveries

Miguel Jaller, Leticia Pineda, Hanjiro Ambrose
Institute of Transportation Studies, UC Davis
For more information: contact Miguel Jaller at mjaller@ucdavis.edu.

June 2017

POLICY BRIEF

The urban freight system (UFS) is an essential component of the greater freight system and is vital to the urban economy. While the UFS represents a small share of urban traffic, it generates a disproportionate amount of pollution and greenhouse gas emissions, and also has impacts on congestion, safety, and public health. The UFS is largely represented by last mile deliveries, which are characterized as trips that deliver products consumed, or used for other purposes. Last mile deliveries are part of the traditional business to business (B2B) commerce, and the rapidly increasing business to consumer (B2C) and consumer to consumer (C2C) commerce.

The UFS is complex and becoming increasingly so as on-demand delivery services proliferate. Online retail sales (B2C) accounted for $394.9 billion or 8.1% of total retail sales in 2016, an increase of 15.1% from 2015 with residential deliveries serving as the main drop-off point for customers. This trend exacerbates existing challenges for last mile deliveries (e.g., competition for parking, contending with truck size limits and truck technology requirements), and is also requiring a new configuration of the freight system as a whole, and last mile logistics in particular. If left unattended, the issues are expected to intensify.

Research Findings

The net effect of on-demand shopping on personal and freight trips varies. Shopping is a complex process, multiple variables and contexts trigger this activity, from the basic need of goods to social interactions, sensorial experiences, recreation, and more. Numerous studies show the existence of complementary and substitution effects between on-demand shopping and traditional shopping trips. Overall, Omni-channel (i.e., online, in-store, combinations) shopping is expected to increase as customers can benefit from the perks of traditional and e-retail environments. Consumer preferences regarding delivery times, shipping costs, product return processes, and delivery points, are among the main factors driving the success or failure of retailers and marketplaces.

Moreover, the use of information and communication technologies (ICT) provide customers the flexibility of purchasing goods without restrictions of time and space. This is creating a dynamic pull demand that impacts last mile supply chain and logistics. Due to the dominance of complementary trips (generation of both, shopping trip and residential freight delivery), in the short term, the net effect of on-demand shopping is an increased number of trips (personal and freight), and associated externalities.

Parcel and other specific Commercial delivery fleets are suitable for early adoption of low or zero-emission technologies but incentive programs will be needed. An analysis of commercial freight vehicle travel patterns (i.e., delivery route data) for different vocations (e.g., beverage warehouse, parcel, linen, food and local) showed similar travel patterns, though parcel delivery fleets stood out by having shorter trips, higher number of stops, and lower driving average speeds. Most parcel delivery vehicles can satisfy more than 90% of their demand within a 100 mile range, which is the range of zero emission vehicle technologies currently available. However, to make these vehicles affordable and competitive against conventional technologies, the use of

KEY TAKEAWAYS

- The net effect of on-demand shopping on personal and freight trips varies.
- Parcel and other specific commercial delivery fleets are suitable for early adoption of low or zero-emission technologies but incentive programs will be needed.
- Programmatic freight demand management and land use planning strategies should also be considered to improve urban freight deliveries.
- Consumer behavior strategies show promise in improving efficiency on the demand side.
Findings (continued)

incentives is essentialviii. Moreover, there is a need to complement current financial based incentive programs (designed for the initial purchase of such vehicles) with other non-financial and operational performance based programs. This is because other incentives addressing the operational challenges and system inefficiencies faced by the fleets may help foster the adoption of such technologies.

Programmatic freight demand management and land use planning strategies should also be considered to improve urban freight deliveriesviii. There are a number of strategies that could mitigate the issues associated with last mile deliveries in both residential and commercial areas. Examples include:

- Voluntary off-hour delivery (foster freight activity in the off-hours) programsv;
- Mode shift programs;
- Incorporating freight into land use planning;
- Parking, loading and unloading zone managementx;
- Establishing alternative delivery points can lessen impacts on residential areasxii, xiii, xiv, xv and,
- Use of urban consolidation centers, if feasible, where the last mile can be delivered with local carriers including bikes and smaller zero and near zero emission vehiclesxvi.

Consumer behavior strategies show promise in improving efficiency on the demand sidexvii. Changing consumer behavior is probably the most difficult task, and while preliminary results offer insights, further research is still needed to determine the appropriate strategies, such as:

- Providing consumer incentives for consolidating purchases, picking alternative delivery points, or choosing non-expedite delivery services;
- Reducing product returns by informing customers about their purchase history, the environmental implications of returns, or rethinking return processes and costs; and
- Informing consumers about the environmental impacts of shopping processes.

xiiJaller, M., L. Pineda, and D. Phong (in press). Spatial Analysis of Warehouses and Distribution Centers in Southern California. Transportation Research Record (TRR), Journal of the Transportation Research Board
xviiHolguín-Veras, J., et al., (2015)