Title
Spinal opioid receptors and adenosine release: Neurochemical and behavioral characterization of opioid subtypes

Permalink
https://escholarship.org/uc/item/5x87n19q

Journal
Journal of Pharmacology and Experimental Therapeutics, 275

ISSN
0022-3565

Authors
Cahill, CM
White, TD
Sawynok, J

Publication Date
1995

License
CC BY 4.0

Peer reviewed
Spinal Opioid Receptors and Adenosine Release: Neurochemical and Behavioral Characterization of Opioid Subtypes

Catherine M. Cahill, Thomas D. White and Jana Sawynok

Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia Canada B3H 4H7

Accepted for publication June 12, 1995

ABSTRACT

Release of adenosine from the spinal cord contributes to spinal antinociception by morphine. Morphine induces a Ca\(^{2+}\)-dependent release of adenosine from dorsal spinal cord synapses, which is augmented under partially depolarizing conditions. The present study examined the opioid receptor subtypes involved in this release, and determined whether adenosine is an important mediator of antinociception induced by the spinal administration of selective opioid agonists in rats. Nanomolar and micromolar concentrations of the selective mu opioid agonists DAMGO ([d-Ala\(^2\),N-Me-Phe\(^4\),Gly\(^5\)-ol]enkephalin) and PLO17 ([N-MePhe\(^3\),d-Pro\(^4\)]morphiceptin) induced release of adenosine in a biphasic manner in the presence of a partial depolarization (addition of 6 mM K\(^+\) to the Krebs' medium). The delta opioid agonists DPDPE ([d-Pen\(^2\),d-Pen\(^3\)]enkephalin) and DELT ([d-Ala\(^2\),Cys\(^4\)]deltorphin) and the kappa opioid agonist U50488H (trans-\(\pm\)-3,4-dichloro-N-methyl-N-(2-(1-pyrrol-2-yl)-5-azacyclotetradecin-1-yl)phenylalanine) had little effect on the release of adenosine except at high micromolar concentrations. Release of adenosine by mu (nanomolar) and delta (micromolar) ligands is Ca\(^{2+}\)-dependent, whereas the kappa (micromolar) receptor ligand releases adenosine via a Ca\(^{2+}\)-independent mechanism. Behavioral antinociception using the hot-plate threshold test revealed that intrathecal administration of the mu and delta opioid receptor agonists produced dose-dependent antinociception with an order of potency of DAMGO, PLO17 > morphine, DELT > DPDPE. An ED\(_{75}\) dose of morphine, DAMGO or PLO17 was attenuated dose-dependently by intrathecal pretreatment with the adeninoceptor antagonist caffeine. Caffeine did not block the antinociceptive response to delta agonists, but in fact augmented antinociception when combined with DPPE and DELT. This augmentation was dose-dependent. This study demonstrates that activation of the mu receptor subtype is responsible for the opioid-induced release of adenosine from the spinal cord, that such release contributes to the spinal antinociception by mu agonists and that only release evoked by low doses of opioids is behaviorally relevant.

It is well established that the spinal administration of mu, delta and kappa opioid receptor agonists produces spinal antinociception in human and animal studies (reviewed by Yaksh and Malmberg, 1994). Opioid receptor binding sites are present in the substantia gelatinosa of the dorsal spinal horn at sites both pre- and postsynaptic to primary afferent terminals (Besse et al., 1990). One mechanism by which morphine produces antinociception is by acting presynaptically to inhibit the release of neurotransmitters/modulators such as substance P from afferent nerve terminals in the spinal cord (Jessell and Iversen, 1977; Yaksh and Nouiehed, 1985). However, more recent data have indicated that opioids can exert multiple effects on such release (Mauborgne et al., 1987; Pohl et al., 1989) and trigeminal nucleus slices (Suarez-Roca and Maixner, 1993), in addition to exhibiting the characteristic inhibition of release at higher doses. Opioids also can produce dual effects on the release of cholecystokinin from the spinal cord (Benoliel et al., 1991). Spinal mediates excitatory effects of opioids also have been demonstrated in electrophysiological paradigms in which low nanomolar doses of opioid agonists enhance C-fiber activity (Dickenson and Sullivan, 1986; Sullivan and Dickenson, 1988). In cultured dorsal root ganglion neurons, opioids produce complex effects on action potential duration with prolongation at low nanomolar concentrations and shortening at micromolar concentrations (Chen et al., 1988; Shen and Crain, 1989).

Adenosine is a modulator of sensory transmission within the spinal cord after noxious stimulation (reviewed by Sawynok and Sweeney, 1989; Salter et al., 1993). The i.t. admin-

ABBREVIATIONS: i.t., intrathecal; DAMGO, [d-Ala\(^2\),N-Me-Phe\(^4\),Gly\(^5\)-ol]enkephalin; DDPE, [d-Pen\(^2\),d-Pen\(^3\)]enkephalin; DELT, [d-Ala\(^2\),Cys\(^4\)]deltorphin; %MPE, maximum percentage of effect; PLO17, [N-MePhe\(^3\),d-Pro\(^4\)]morphiceptin; U50488H, trans-\(\pm\)-3,4, dichloro-N-methyl-N-(2-(1-pyrrol-2-yl)-5-azacyclotetradecin-1-yl)phenylalanine; i.c.v., intracerebroventricular.

Received for publication November 16, 1994.

1 This work was supported by the Medical Research Council of Canada.
istration of adenosine receptor agonists produces antinociception in thermal threshold tests (reviewed by Sawynok, 1991), in the formalin test (Malmberg and Yaksh, 1993) and in a chemical model of allodynia (Sosnowski and Yaksh, 1989). The i.t. administration of methylxanthine adenosine receptor antagonists attenuates the antinociceptive effects of morphine (DeLander and Hopkins, 1986; Sweeney et al., 1987; Yang et al., 1994), DAMGO, DPDPDE and β-endorphin (DeLander et al., 1992). The release of adenosine from the spinal cord has been proposed to contribute to opioid-induced antinociception on the basis of such behavioral observations.

This adenosine release hypothesis of opioid action is supported by neurochemical experiments, as morphine has been shown to release adenosine from the spinal cord both from synaptosomes and the intact spinal cord (Sweeney et al., 1987, 1989). This release is receptor mediated, Ca++-dependent and originates from capsaicin-sensitive primary afferent neurons (Sweeney et al., 1989). Originally, release from dorsal spinal cord synaptosomes was shown to occur at 10 to 100 μM morphine (Sweeney et al., 1987) but, more recently, morphine has been shown to produce two phases of release at 10 nM and 1 to 100 μM in the presence of partial depolarization produced by the addition of 6 mM KCl to the Krebs’ medium (Cahill et al., 1993b).

In the present study, we have examined the opioid receptor subtypes involved in the release of adenosine from rat dorsal spinal cord in both neurochemical and behavioral studies. This was accomplished by determining the effect of the selective μ opioid receptor agonists PLO17, DAMGO and morphine, the δ opioid receptor agonists DPDPDE and DELT and the κ opioid receptor agonist U50488H, on the release of adenosine from synaptosomes prepared from the dorsal spinal cord. In addition, the effects of caffeine, a methylxanthine adenosine antagonist, on antinociception produced by μ and δ opioid agonists in the hot-plate test after i.t. administration were determined. Caffeine was chosen as it is a broad-spectrum adenosine receptor antagonist (blocking adenosine A1 and A2 receptors with comparable affinity) and is water soluble (Daly, 1993).

Recently, δ opioid receptor subtypes have been identified pharmacologically after the development of selective agonists and antagonists. DPDPDE, a δ-1 agonist, and δ-2 agonists [δ-Ala²,Glu⁴]Deltorphin (Jiang et al., 1991; Sofuoglu et al., 1991a,b; Mattia et al., 1991, 1992) and DELT (Horan et al., 1992) induce antinociception after either i.c.v. or i.t. administration. An additional objective of this study was to examine whether different δ opioid receptor subtypes release adenosine from the spinal cord and produce a methylxanthine-sensitive antinociception. Some results presented in this paper have appeared previously in abstract form (Cahill et al., 1992, 1993c).

**Methods**

**Animals.** Male Sprague-Dawley rats (250–325 g; Charles River, Quebec, Canada) were housed in groups of two for in vitro experiments or singly for behavioral experiments. They were maintained on a 12/12 hr light/dark cycle and were allowed free access to food and water until the time of experimental testing. Experiments were carried out according to a protocol approved by the Animal Care Committee of Dalhousie University, Nova Scotia.

**Neurochemical Experiments**

Preparation of spinal cord synaptosomes and adenosine release. Release of adenosine from spinal cord synaptosomes was studied as described previously (Cahill et al., 1993a). Spinal cord synaptosomes were prepared from the dorsal spinal cord in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-buffered sucrose and isolated by differential centrifugation. Synaptosomes were then incubated in Krebs-Henseleit bicarbonate medium at 37°C before experimentation.

Aliquots of the synaptosomal (P2 fraction) suspension (350 μl) were added to microfuge tubes containing the drugs to be investigated (final volume of 365 μl) and were incubated for 10 min at 37°C. Two control tubes containing only synaptosomes and Krebs’ medium were included in each experiment. One tube was centrifuged immediately before the 10-min incubation (time, 0 min) to indicate the quantity of adenosine released during the preparation of the synaptosomes. The second tube was incubated for 10 min to yield the amount of adenosine released in the absence of drugs (basal release). In all cases, release was terminated by centrifugation; the supernatant was deproteinized then derivatized with 4.5% chloroacetaldehyde to form the etheno-derivative of adenosine which was then quantitated by high-performance liquid chromatography with fluorescence detection. Adenosine release was expressed as picomoles per milligram of protein per 10 minutes. Basal adenosine values were calculated by subtracting release at 0 min from the total adenosine released in 10 min. Evoked values were calculated by subtracting the total release in the absence of drugs from total release with drugs present. When an additional 6 mM K⁺ was present to partially depolarize the synaptosomes, evoked values were expressed as above the 6 mM K⁺ value. In all experiments, the addition of 6 mM K⁺ did not produce a significant intrinsic release.

For Ca⁺⁺-free experiments, synaptosomes were prepared as above except the Krebs’ medium was Ca⁺⁺-free. Ca⁺⁺ was added back to synaptosomes during the drug incubation stage for controls only, thereby allowing comparisons to be made between Ca⁺⁺-free conditions and Krebs’ solution with normal Ca⁺⁺ concentrations. Experiments to determine whether release of adenosine originates as adenosine per se or a nucleotide that is converted to adenosine extracellularly were performed by the addition of ecto-5’-nucleotidase inhibitors (α,β-methylene ATP and 6’GMP) at the drug incubation stage.

In all experiments, a positive control of either 24 mM K⁺ or 100 μM morphine was included; both of these evoke maximal release of adenosine (Cahill et al., 1993a).

**Behavioral Experiments**

**Acute injection.** Opioid agonists were injected directly into the subarachnoid space of rats (275–300 g) by lumbar puncture according to the method of Hylden and Wilcox (1980). Injections of 20 μl were made under halothane anesthesia via a 30-gauge needle into an intravertebral space at approximately the level of the 5th or 6th lumbar vertebrae. A characteristic tail-flick response confirmed entry into the subarachnoid space. Acute i.t. injections were used to obtain dose-response relationships of each μ and δ agonist in the hot-plate test.

**Intrathecal cannulation and injection.** Rats were implanted with chronic i.t. cannulae under halothane anesthesia as described previously (Sweeney et al., 1987). After surgery, rats were given penicillin G (PenlongXL) i.m. and 10 ml of lactated Ringer’s solution s.c. to promote recovery from surgery. Only animals exhibiting no motor deficits as the result of surgery were used for antinociception experiments. Experiments were commenced 7 to 10 days after surgery and animals were only used for one experiment. Chronic cannulae were implanted in animals used for studying the methylxanthine sensitivity of selective opioid agonists. Animals implanted with chronic cannulae were used for antagonist experiments as acute injection of caffeine did not block morphine-induced antinociception. All opioid agonists and caffeine were injected in a volume of 10 μl.
(cannula volume, 8 μl) followed by 10 μl of saline flush to ensure complete delivery of the drugs. Caffeine, 10 μl i.t., was injected followed by 10 μl of saline flush, 15 min before the i.t. administration of the opioid agonist tested.

Antinociceptive testing. Antinociception was quantitated by using a constant temperature hot-plate test (50°C ± 0.5°C). The response latency to a hindpaw lick was recorded (base line, 7–12 sec; cutoff, 50 sec). In the absence of a response, the animal was removed from the hot plate at 50 sec to avoid tissue injury, and assigned this latency.

Agonist studies. The first series of experiments determined the dose-response and time course of acute i.t. mu and delta agonists on the hot-plate response. The following doses for each opioid agonist were examined on the hot-plate test after acute i.t. administration: DAMGO (0.019–5.8 nmol), PLO17 (0.19–5.6 nmol), morphine (1.5–15 nmol), DPDPE (1.35–81.2 nmol) and DELT (0.34–11.5 nmol).

Antagonist studies. For evaluation of adenosine involvement in opioid antinociception, caffeine (103–515 nmol) or a saline control was injected i.t. 15 min before the i.t. administration of the opioid agonist tested. The degree of antagonism determined subsequent doses of caffeine to obtain an IC50 value for the methylxanthine-sensitivity of each opioid agonist.

Statistics and calculation of data. By using the peak effect of the particular opioid agonist, dose-response curves were generated by plotting the %MPE vs. log dose. Response latency data from the hot-plate measurements were converted to %MPE according to the formula:

\[ \text{MPE} = \frac{(\text{postdrug latency} - \text{baseline latency})}{(\text{cutoff time} - \text{baseline latency})} \times 100 \]

Time effect and dose-response data are presented as mean ± S.E.M. The effectiveness of an opioid agonist in producing antinociception is presented as the ED50 on the hot-plate test. The IC50 values for caffeine refer to the dose producing a 50% reduction in the effect of an ED50 dose of agonist. ED50 values were interpolated by the computer program INPLOT (Graph Pad) and confidence intervals were calculated using InSTAT (Graph Pad). Statistical comparisons were made by using analysis of variance followed by the Student's-Newman-Keuls test.

Drugs. Drugs used in this study were obtained from the following sources: DPDPE and PLO17 (Peninsula Laboratories, San Carlos, CA); α,β-methylene ADP, 5′GMP and DAMGO (Sigma Chemical Co., St. Louis, MO); morphine sulfate (British Drug Houses, Ontario, Canada); DELT (kindly supplied by Dr. Frank Porreca); and U50488H (trans-(±)-3,4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)ethyl)amide) (Upjohn, Kalamazoo, MI). All drugs were dissolved in physiological saline (0.9% NaCl w/v).

Results

Opioid-evoked release of adenosine from dorsal spinal cord synaptosomes. After the addition of 6 mM K+ (total K+ concentration of 10.7 mM), which by itself did not alter the release of adenosine, a significant enhancement of the release of adenosine occurred at 10⁻⁸ and 10⁻⁶ M morphine, but not 10⁻⁷ M morphine (Cahill et al., 1993b) (see fig. 1A). The selective mu opioid agonist, DAMGO, had little effect on the release of adenosine alone (fig. 1B), but the addition of 6 mM K+ significantly augmented the release of adenosine in a biphasic manner similar to morphine. DAMGO now evoked the release of adenosine at 10⁻⁶ to 10⁻⁴ M and 10⁻⁴ to 10⁻² M, but not at 10⁻³ M. PLO17, a highly selective mu opioid agonist, significantly increased the release of adenosine above basal levels at 10⁻³ M, and this release was enhanced in the presence of an additional 6 mM K+ at both nanomolar and micromolar doses (fig. 1C). The relative nanomolar and micromolar potencies of the mu opioid agonists in the presence of 6 mM K+ in releasing adenosine from the dorsal spinal cord are shown in figure 2. At nanomolar concentrations, the more selective mu opioid ligands, DAMGO and PLO17, appeared to be more potent than morphine but, at micromolar concentrations, morphine was more potent than DAMGO and PLO17.

The potential role of delta opioid receptors in releasing adenosine from the spinal cord was examined by using the specific opioid agonists DPDPE (delta-1 agonist) and DELT (delta-2 agonist). DPDPE had no effect on adenosine release except at the highest dose (10⁻⁴ M) in the presence of added 6 mM K+ (fig. 3A). DELT increased adenosine release at 10⁻⁴ M, but there was no additional enhancement of release in the
presence of an additional 6 mM K⁺ (fig. 3B). Neither of the delta opioid agonists enhanced the release of adenosine at nanomolar concentrations, either with or without the addition of the 6 mM K⁺.

The kappa opioid agonist U50488H was used to examine the potential kappa receptor involvement in release of adenosine from the spinal cord. U50488H had no effect on adenosine release with normal Krebs' medium, but an enhancement of release occurred at 10⁻⁶ to 10⁻⁴ M when synaptosomes were partially depolarized with 6 mM K⁺ (fig. 3C). There was no effect at nanomolar doses either in the absence or presence of 6 mM K⁺.

Characterization of Adenosine Release by Opioid Agonists

Calcium dependence. The release of adenosine by nanomolar doses of the mu opioid agonists morphine, PLO17 and DAMGO, and micromolar doses of the delta opioid agonists was Ca⁺⁺-dependent as no release was seen when synaptosomes were prepared and incubated in Ca⁺⁺-free medium (fig. 4). In contrast, the kappa opioid receptor agonist-evoked release of adenosine was Ca⁺⁺-independent, as release of adenosine by U50488H was still present and perhaps even augmented in the absence of Ca⁺⁺.

Adenosine vs. nucleotide. The release of adenosine by nanomolar concentrations of mu opioid receptor agonists was characterized further by determining whether the evoked adenosine release represents adenosine per se or arises from nucleotide that is converted to adenosine extracellularly. Synaptosomes were incubated with and without α,β-methylene ADP and 5’GMP, which inhibits ecto-5’-nucleotidase activity. The degree of inhibition of enzyme activity was determined by calculating the amount of conversion of 5’AMP (1 µM) to adenosine in a control tube (80%). There was no alteration in the amount of adenosine released by any mu agonist in the presence of the nucleotidase inhibitors, indicating that the evoked release of adenosine is the result of adenosine released per se rather than release of a nucleotide (fig. 5).

Spinal antinociception by selective opioid agonists. The effects of the acute i.t. injection of the mu opioid receptor agonists morphine, PLO17 and DAMGO in the hot-plate test are shown in figure 6. The i.t. injection of each mu agonist produces a dose-dependent increase in hot-plate latency; between 1.5 to 15 nmol for morphine, 0.19 to 5.6 nmol for PLO17 and 0.19 to 5.8 nmol for DAMGO. These agents differed with regard to their duration of action. The more selec-
EFFECTS OF I.T. ADMINISTERED MU AND DELTA AGONISTS

The ED50 values given are expressed with the range of confidence intervals (95%) of range of upper and lower limits in parentheses. ED50 values were calculated from dose-response curves in figure 8.

<table>
<thead>
<tr>
<th>Agonist</th>
<th>ED50 Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>3.9 (1.112–6.690)</td>
</tr>
<tr>
<td>DAMGO</td>
<td>0.097 (0.084–0.110)</td>
</tr>
<tr>
<td>PLO17</td>
<td>0.22 (0.091–0.349)</td>
</tr>
<tr>
<td>DPDPE</td>
<td>68.7 (42.99–94.41)</td>
</tr>
<tr>
<td>DELT</td>
<td>1.78 (1.523–2.037)</td>
</tr>
</tbody>
</table>

The relative potencies of the mu and delta opioid receptor agonists DAMGO and PLO17 produced their greatest effect at the first postdrug measurement (15 min), and this was diminished by 60 to 75 min, whereas morphine antinociception lasted throughout the test period of 90 min (fig. 6). The dose-response curves for each mu agonist were plotted as the peak effect for each dose examined. ED50 values were derived from the dose-response curves and are presented in table 1. Both delta agonists had a similar onset of action, but the analgesic effects of DELT were more prolonged compared to DPDPE. No impairment of motor function was observed at the doses presented.

The antinociceptive effects of the delta opioid agonists DPDPE and DELT in the hot-plate test are presented in figure 7. Both agonists produced a dose-dependent increase in hot-plate latency between 1.35 to 81.2 nmol for DPDPE and 0.34 to 11.5 nmol for DELT. ED50 values were derived from the
agonists are depicted in figure 8. Peak analgesic effects of each agonist were converted to %MPE and are presented as a function of dose. The antinociceptive potency of the opioid agonists is: DAMGO, PLO17 > DELT, morphine > DPDPE. The analgesic effects of U50488H were not examined in this study as kappa agonists have little effect on thermal nociceptive tests.

Effects of caffeine on spinal antinociception by mu and delta agonists. Rats implanted with chronic i.t. cannulae were used to determine the role of adenosine in the antinociceptive effect elicited by an EC75 dose of selective opioid receptor agonists. Caffeine pretreatment dose-dependently attenuated the antinociceptive effect of each of the mu agonists (fig. 9). Caffeine shortened the duration of action of each ligand and attenuated the peak analgesic response. These doses of caffeine alone had no effect on hot-plate latencies and produced no overt behavioral effects at any of the doses used in this paradigm (data not shown). In the right hand panels (fig. 9), the degree of antagonism is depicted by values of area under the curve of each agonist with increasing doses of caffeine. IC50 values were interpolated to be 82 nmol (morphine), 58 nmol (DAMGO) and 75 nmol (PLO17), indicating that caffeine had a similar ability to antagonize each mu agonist.

In contrast to the mu opioid agonists, i.t. pretreatment with caffeine did not antagonize the antinociceptive effects elicited by the delta opioid agonists DPDPE and DELT (fig. 10). The antinociceptive response to DELT in the agonist studies was less effective than in the agonist studies, and this may be due to the use of two different samples of DELT. Interestingly, higher doses of caffeine (>515 nmol) produced a significant enhancement of antinociception. These doses of caffeine also had no significant effect on hot-plate latency or produced any overt behavioral effects (data not shown).

Discussion

The aim of the present study was to characterize the primary opioid receptor subtypes (mu vs. delta vs. kappa) involved in the spinal release of adenosine using both behavioral and neurochemical approaches. The involvement of selective delta opioid receptor subtypes (delta-1 and delta-2) in adenosine release and sensitivity of their actions to caffeine was subsequently addressed.

Recent studies in this laboratory have demonstrated that morphine releases adenosine from the dorsal spinal cord in two distinct phases (nanomolar and micromolar) (Cahill et al., 1993b). The nanomolar component of release is exhibited by the selective mu opioid agonists DAMGO and PLO17, but not by either delta or kappa agonists, indicating that this phase of release is mediated by activation of mu opioid receptors. PLO17, DAMGO and morphine show high selectivity for the mu opioid receptor subtype in binding studies compared to delta receptors (Chang et al., 1983; James and Goldstein, 1984). The micromolar component of release may involve activation of multiple opioid receptors as all of the opioid agonists for mu, delta and kappa receptors release adenosine at 100 μM. Alternatively, at these doses, the delta and kappa opioid agonists may have lost their selectivity and act at mu opioid receptors (Chang et al., 1983; Goldstein, 1987; Erspmier et al., 1989).

Although opioids are generally considered to produce inhibitory actions on cellular function, a growing number of studies have reported excitatory effects at nanomolar doses of opioids. Stimulating effects of low concentrations of mu opioid receptor agonists in particular have been noted (Mauborgne et al., 1987; Pohl et al., 1989; Suarez-Roca and Maixner, 1991, 1992). Within trigeminal nucleus caudalis slices, morphine produces multiphasic effects on the K+-evoked release of substance P from the rat (Suarez-Roca et al., 1992), with the different phases being attributed to activation of different opioid receptors (Suarez-Roca and Maixner, 1992). Thus, activation of mu-1 and delta opioid receptors inhibit K+-evoked release of substance P, whereby activation of mu and kappa opioid receptors facilitates K+-evoked substance P release (Suarez-Roca and Maixner, 1992). Electrophysiological studies represent another paradigm in which opioids produce excitatory actions. Thus, i.t. administration of morphine (Wiesenfeld-Hallin et al., 1990; Strimbu-Gozariu et al., 1993) or other mu agonists (Dicken-
Cahill et al.

Fig. 9. Effects of graded doses of i.t. caffeine administered 15 min before opioid agonist on the antinociceptive response to a constant dose of either morphine (7.5 nmol), DAMGO (0.58 nmol) or PLO17 (0.56 nmol). ○, Agonist control; ▼, +caffeine, 103 nmol; ●, +caffeine, 257 nmol; ♦, +caffeine, 515 nmol. B, base-line latencies determined at 15-min intervals before the i.t. injection of drug. The data are expressed as the means ± S.E.M. for the latency in the hot-plate test of n = 5; *P < .05 and **P < .01.

son and Sullivan, 1988; Dickenson et al., 1987; Sullivan and Dickenson, 1988) at low concentrations produce a facilitatory effect to enhance C-fiber-evoked activity. Finally, morphine has dual effects on the release of cholecystokinin from the spinal cord (Benoliel et al., 1991), although in this case stimulation is mediated by delta receptor activation, whereas inhibition is mediated by mu receptor activation.

Dual excitatory and inhibitory effects of opioids have been observed in other studies. Opioids produce complex effects on cultured dorsal root ganglion neurons, as action potential duration is prolonged by low nanomolar concentrations of opioid receptor agonists, whereas it is shortened by micromolar concentrations (Chen et al., 1988; Shen and Crain, 1989). Opioids produce a similar biphasic effect on electrically evoked release of [met]-enkephalin from myenteric plexus of the guinea pig ileum (Xu et al., 1989). Whereas these studies demonstrate dual excitatory and inhibitory effects of opioids, the effects are not discriminated by selective agonists, as mu, delta and kappa ligands produce each effect.

The relative potency of mu opioid receptor-selective agonists to induce adenosine release in partially depolarized synaptosomes at micromolar concentrations (morphine > PLO17 and DAMGO) is opposite to that seen with nanomolar concentrations (DAMGO and PLO17 > morphine). Thus, morphine is more active at micromolar concentrations than the more selective mu ligands DAMGO and PLO17. This may be the result of morphine acting at both delta and mu opioid receptors in this concentration range, thus producing synergistic effects to elicit the release of adenosine. There are many recent reports providing evidence for synergistic spinal antinociceptive interactions among mu and delta opioid receptor ligands (e.g., Malmberg and Yaksh, 1992; reviewed by Solomon and Gebhart, 1994). Indeed, low nanomolar doses of morphine, PLO17 or DAMGO when combined with inactive doses of either DELT or DPDPE act synergistically to enhance the release of adenosine from spinal cord synaptosomes (Cahill et al., 1993c), indicating that mu/delta synergy is expressed at the synaptosomal level as well as in more integrated systems utilized in behavioral studies.

The present study shows that the release of adenosine by
Both mu opioid (nanomolar) and delta opioid agonists (micromolar) release adenosine via a Ca\(^{2+}\)-dependent mechanism (release by the kappa opioid agonist is Ca\(^{2+}\)-independent), and that nanomolar doses of mu agonists release adenosine per se rather than a nucleotide. This is consistent with previous observations whereby morphine-evoked release of adenosine at both nanomolar and micromolar concentrations occurs as adenosine per se and via a Ca\(^{2+}\)-dependent mechanism (Sweeney et al., 1989; Cahill et al., 1993b). Opioid-induced release of adenosine involves activation of \(\omega\)-conotoxin-sensitive voltage-dependent Ca\(^{2+}\) channels (Cahill et al., 1992, 1993b). Ca\(^{2+}\) entry through voltage-sensitive Ca\(^{2+}\) channels has been implicated in the mechanism by which opioids produce spinal analgesia (Porzig, 1990). Whereas most earlier studies examining the effects of opioids on Ca\(^{2+}\) currents have demonstrated inhibition of Ca\(^{2+}\) entry into neurons (Moises et al., 1994), a number of recent studies have described mechanisms by which opioids may enhance Ca\(^{2+}\) entry into cells or intracellular levels of Ca\(^{2+}\). Thus, studies utilizing Ca\(^{2+}\) imaging techniques have shown that opioids can increase intracellular Ca\(^{2+}\) levels in cultured neurons (Jin et al., 1992; Tang et al., 1994). In some cells, this effect is mediated by delta opioid receptor activation (Jin et al., 1992; Tang et al., 1994) but, in other cells, it is mediated by mu opioid receptors (Smart et al., 1994).

The second messenger system involved in the opioid-enhanced intracellular Ca\(^{2+}\) levels may be the phospholipase C-phosphoinositol system (Lambert et al., 1990; Jin et al., 1994; Smart et al., 1994). Thus, opioids produce a Ca\(^{2+}\)-dependent and pertussis toxin-sensitive G protein-dependent increase in phosphoinositol levels (Smart et al., 1994). Morphine evoked release of adenosine is both Ca\(^{2+}\)-dependent (Sweeney et al., 1989) and is sensitive to pertussis toxin pretreatment (Sawynok et al., 1990). As activation of protein kinase C increases the release of neuropeptides from sensory neurons (Barber and Vasko, 1994), it is quite possible that the ability of morphine to increase adenosine release is mediated by the protein kinase C second messenger system. Whereas stimulatory effects of opioids in cultured dorsal root ganglion cells have been attributed to stimulation of cyclic AMP (Crain and Shen, 1990), this effect does not appear to be involved in adenosine release from synaptosomes (Nicholson et al., 1991).

Behavioral testing of the selective agonists for mu and delta opioid receptors demonstrated a dose-dependent antinociceptive effect for each ligand in the hot-plate test. The duration of effect produced by each agonist was variable, with morphine having the longest antinociceptive effect of each of the ligands examined and DPDPE having the shortest. The relative potency for these agonists was DAMGO, PLO17 > DELT and morphine > DPDPE. This is similar to the order of potency of the mu and delta agonists in our synaptosomal release study as well as that already reported for the hot-plate test (DAMGO > PLO17 > morphine > DPDPE) (Malmberg and Yaksh, 1992). Caffeine blocks antinociception induced by mu but not delta agonists, and this suggests that only the release of adenosine which occurs at nanomolar concentrations of opioids is relevant to the expression of behavioral actions.

Activation of delta opioid receptors produces antinociception which was not antagonized but augmented by caffeine. DeLander and colleagues (1992) examined the possible involvement of adenosine in opioid modulation of nociceptive processing in mice. They demonstrated that theophylline inhibited the antinociceptive actions produced by i.t. morphine and DAMGO as well as the action of DPDPE, although in the latter case dose-response curves were shifted in a nonparallel manner. Whether the difference in methylxanthine-sensitivity of delta agonists is due to species (rats vs. mice), or to a difference in the nociceptive test (hot-plate vs. tail-flick) is not clear. In a subsequent study, DeLander and Keil (1994) showed that i.t. adenosine agonists produced antinociceptive synergy when combined with delta opioid agonists but only additivity with mu opioid agonists. It was argued that this observation supported a mu opioid receptor but not a delta opioid receptor-mediated release of adenosine.

The present study revealed the interesting observation that antinociception produced by delta opioid receptor activation was augmented by pretreatment with the adenosine receptor antagonist caffeine. Some other studies also have reported augmentation of opioid induced antinociception with methylxanthines. Thus, after i.c.v. administration of morphine to rats, antinociception in the hot-plate and tail-flick tests was attenuated by a low dose of i.t. theophylline, but potentiated by a high dose (Sweeney et al., 1991). High doses of methylxanthines have pharmacological actions other than adenosine receptor blockade, including inhibition of cyclic AMP phosphodiesterase (reviewed by Daly, 1993). Nonxanthine phosphodiesterase inhibitors potentiate antinociception produced by i.t. morphine (Nicholson et al., 1991), such that this action may contribute to caffeine effects at high doses. However, the doses of caffeine that augmented antinociception by delta opioid agonists were the same as those which antagonized morphine and mu opioid-induced antinociception in this study. Whether this reveals some kind of paradoxical facilitatory effect of adenosine which is not normally expressed remains to be resolved.

Delta opioid receptor subtypes (delta-1 and delta-2) regulate nociceptive transmission at the spinal level. The exis-
tence of distinct and functionally significant delta receptor subtypes at the spinal level in rats is based on the antinociceptive effect of selective delta agonists in behavioral tests (Sofuoglu et al., 1991b; Malmberg and Yaksh, 1992; Mattia et al., 1992; Sofuoglu et al., 1993; Stewart and Hammond, 1993a), and by the lack of antinociceptive cross-tolerance after i.t. administration of delta subtype selective agonists in mice (Sofuoglu et al., 1991a). The present study provides additional evidence that the delta opioid receptor is important in modulating nociceptive input, as the delta-2 agonist, DELT, is as potent as morphine in producing analgesia. Dose-response data in mice have shown that [d-Ala²,Glu²]deltorphin is 6- to 10-fold more potent after i.c.v. administration (Jiang et al., 1991), but equipotent with DPDPE after i.t. injections (Mattia et al., 1991, 1992). A more recent study examining the antinociceptive effects of i.t. selective delta opioid receptor subtype agonists in the carrageenin-induced model of thermal hyperalgesia in rats demonstrated that both delta-1 and delta-2 receptors produce analgesia with no difference in potency (Stewart and Hammond, 1993b). Deltorphin II did not increase hot-plate response latencies in the rat, except at doses that produced adverse motor effects (Stewart and Hammond, 1993a). In the present study, no motor impairment was observed by the delta-2 agonist, DELT, at doses 0.34 to 11.5 nmol. The present study demonstrates that, in rats, DELT is ~10 times more potent than DPDPE after the i.t. route of administration, so the Cys⁴⁻ derivative appears to be a more potent analog than the Glu⁴ deltorphin derivative, with no motor impairment at analgesic doses.

In summary, the opioid receptor involved in adenosine release from the rat spinal cord appears to be a mu receptor subtype with little evidence for a selective involvement of delta or kappa receptor subtypes. In behavioral experiments, this conclusion is substantiated by the observation that only the mu opioid agonists are attenuated by adenosine receptor antagonists. This study provides further evidence of the importance of adenosine in opioid-induced antinociception at the spinal level, and demonstrates that only the opioid-induced release of adenosine that occurs at low (nanomolar) concentrations contributes to behavioral effects.

Acknowledgments

The authors are grateful to Frank Porreca for the generous gift of DELT.

References


CAHILL, C. M., WHITE, T. D. AND SAWYER, J. M.: Mu/delta opioid receptor interac-

Send reprint requests to: Dr. Jana Sawynok, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.

93

Spinal Opioids and Adenosine