Lawrence Berkeley National Laboratory
Recent Work

Title
PHOTODETACHMENT OF NEGATIVE ION BEAMS IN THE PRESENCE OF A BACKGROUND GAS

Permalink
https://escholarship.org/uc/item/5zk9t17k

Author
Fink, J.H.

Publication Date
1985-11-01
Submitted to Fusion Technology

PHOTODETACHMENT OF NEGATIVE ION BEAMS
IN THE PRESENCE OF A BACKGROUND GAS

J.H. Fink

November 1985

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PHOTODETACHMENT OF NEGATIVE ION BEAMS
IN THE PRESENCE OF A BACKGROUND GAS

Joel H. Fink
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

ABSTRACT

To suppress space charge blow-up in an ion beam passing through a photo-neutralizer, it is necessary to introduce some background gas. An analysis is presented of the neutralization of a high energy, > 200 keV negative deuterium ion beam, exposed to photo-detachment while in the presence of deuterium. With a gas thickness of less than 0.01 torr-cm, the neutral fraction in the output beam is found to be about the same as that gotten from the photo-neutralizer operating in vacuum.

* This work was supported by the U.S. Army BMD Advanced Technology Center under MIPR W31RPD-53-A182, and U.S. DOE under Contract # DE-AC03-76SF00098.

** Negion Inc., Hayward, CA 94542
I. INTRODUCTION

Photodetachment is an attractive means of neutralizing high energy negative ion beams. In contrast to a maximum neutral fraction of roughly 80% from a plasma cell and about 60% from a gas cell, it can be made to neutralize almost 100% of an incident negative ion beam.

This is advantageous because the higher neutral fraction will form the desired neutral current from a smaller current of negative ions. For the beamline to be more efficient however, the power saved by accelerating the smaller current of high energy negative ions must be greater than the power used to operate the photodetachment cell.

Although photodetachment is usually considered as a process to be done in a vacuum, some background gas may be desirable. In many applications, beam divergence is critical and a low pressure of gas, of the order of 10^{-4} torr, is needed to suppress the space charge of the negative ions and stripped electrons in the neutralizer. Low energy positive ions, created along the beam path by collisions with the gas molecules, 'neutralize' the space charge and thereby minimize the beam divergence.

The object of this work is to analyse the effect of a deuterium gas background on photodetachment of high energy, negative deuterium ions. In the following, I present the usual equations for neutralizing a negative ion beam in a gas, simplified by the use of only two cross sections, i.e. for stripping negative ions, σ_{-10} and for ionizing neutrals, σ_{01}. As can be seen in Fig. 1, these are the only cross sections of significance for a deuterium beam of 200 keV or more in a deuterium gas target.
II. DISCUSSION

A. Gas Neutralizers

A beam of high energy negative ions passing through a gas cell of line density \(\Pi \) will be changed into a fraction \(F^+ \) of positive ions, \(F^- \) negative ions and \(F^0 \) neutrals. This process is described by the following equations:

\[
\frac{dF^-}{d\Pi} = -\sigma_{-10} F^- \tag{1}
\]

\[
\frac{dF^0}{d\Pi} = \sigma_{-10} F^- - \sigma_{01} F^0 \tag{2}
\]

\[
F^- + F^+ + F^0 = 1 \tag{3}
\]

From the above, the neutral fraction of the beam is found to be:

\[
F^0 = \left(\frac{\sigma_{-10}}{\sigma_{-10} - \sigma_{01}} \right) \left(\exp\{-\sigma_{01} \Pi\} - \exp\{-\sigma_{-10} \Pi\} \right) . \tag{4}
\]

B. Photo-neutralizers

In contrast to gas neutralizers, a photodetachment cell illuminated by light of an intensity \(\Phi \ (W\cdot cm^{-2}) \) neutralizes negative ions at a rate:

\[
\frac{dF^-}{dt} = - \left(\frac{hv}{\sigma} \right)^{-1} \sigma \Phi F^- , \tag{5}
\]

where \(\sigma \) is the photodetachment cross section at the wavelength \(\nu \); see Fig. 2.

Introducing the beam velocity, \(v = \frac{dZ}{dt} \), into the previous equation results in:

\[
\frac{dF^-}{dZ} = - \left(v \cdot hv \right)^{-1} \sigma \Phi F^- . \tag{6}
\]

From which the neutral fraction resulting from photo-detachment is found:

\[
F_{PD} = 1 - \exp\{- (v \cdot hv)^{-1} \sigma \Phi Z\} \tag{7}
\]
C. Combined Gas and Photo-neutralizers

Because the gas density, n, is relatively uniform throughout the neutralizer, Eq. 6 can be modified such that:

\[
\frac{dF^-}{d\Pi} = -(nv \cdot hv)^{-1} \sigma_0 F^- .
\]

(8)

where \(\Pi \), the line density of the gas, equals \(nZ \).

A comparison of Eq. 8 with Eq. 1 shows that in the presence of a background gas, photodetachment contributes an additional factor to the negative ion stripping cross section:

\[
\sigma_{PD} = (nv \cdot hv)^{-1} \sigma_0
\]

(9)

which can be evaluated in terms of the neutral fraction \(F_{PD} \) that would be obtained with the photo-neutralizer operating in vacuum. By introducing Eq. 9 into Eq. 7:

\[
\sigma_{PD} \Pi = \ln(1 - F_{PD})^{-1} .
\]

(10)

To determine the neutral fraction \(F_C \) in a combined gas and photo-neutralizer, the cross section \(\sigma_{-10} \) in Eq. 4 should be replaced by \((\sigma_{-10} + \sigma_{PD}) \), resulting in:

\[
F_C = \left(\frac{\sigma_{-10} \Pi + \ln(1 - F_{PD})^{-1}}{(\sigma_{-10} - \sigma_{10}) \Pi + \ln(1 - F_{PD})^{-1}} \right) \times
\]

(\(\exp[-\sigma_{10} \Pi] - (1 - F_{PD}) \exp[\sigma_{-10} \Pi] \)).

(11)

In the above, no allowance was made for the presence of background gas at either end of the neutralizer. If this is an important factor, consideration will have to be given to the charge changing collisions that alter the beam.
composition along the beam path from the negative ion accelerator to the entrance of the neutralizer. As a consequence, the neutralizer will have to be modified to take the altered beam composition into account, as well as optimise the neutral fraction at some location beyond the neutralizer where the background gas density is negligible.

III. RESULTS

Cross sections, taken from reference 1, were used in Eq. 11 to determine \(F_C \) at photodetachment intensities needed to obtain neutral fractions of 20, 40, 60, 80, 90, and 95\% in vacuum. Figs. 3, 4 and 5 show the results for three beam energies (200, 500 and 1000 keV respectively) as functions of the thickness of the background gas. The line density \(\Pi \) (molecules/cm\(^2\)) in Eq. 11, was converted to gas thickness (torr-cm) as shown in the figures, on the assumption that the background gas temperature is 300 K.

With a gas thickness of less than 0.01 torr-cm, corresponding to a 1 meter long neutralizer with a background gas pressure smaller than \(10^{-4} \) torr, the curves show the neutral fractions of the three beams of different energies to be about the same as what would be obtained with photodetachment in vacuum. At greater gas thicknesses, the beam penetration varies with beam energy while the neutral fractions are a function of the intensity of the photodetachment.

A photo-neutralizer capable of neutralizing 80\% or more of a negative ion beam in vacuum, establishes a neutral fraction that does not change much with gas thickness until some critical thickness is reached. It then decreases rapidly as the gas thickness increases. This is a consequence of the high fraction of neutrals in the beam subject to ionizing collisions with the background gas, in contrast to the low fraction of negative ions available to form additional neutrals.
With a photo-neutralizer that neutralizes less than 80% of a negative ion beam in vacuum, the neutral fraction increases with gas thickness to a maximum where the rate at which neutrals are formed, out of negative ions by photodetachment and collisions with the background gas, equals the rate at which neutrals are lost to ionizing collisions. Under these conditions, the maximum neutral fraction is greater and the thickness of gas at the maximum is less than that of an optimized gas cell by itself.

As the gas thickness is increased even more, the negative ions in the beam become depleted and, because the rate of neutral formation falls off, the neutral fraction drops sharply.

III. CONCLUSIONS

This work leads to four general conclusions.

1. Photo-neutralization of a negative deuterium ion beam is not greatly affected by a background deuterium gas thickness less than 0.01 torr-cm.

2. While the neutral fraction of all beams drops off rapidly in over dense gas targets, high energy beams penetrate the farthest.

3. At lower photodetachment intensities, corresponding to less than 80% neutralization in vacuum, the addition of photodetachment enhances a gas neutralizer, increasing the neutral fraction and reducing the thickness of the optimum gas target.

4. For some applications, gas neutralizers enhanced by photodetachment might be practical. The comparatively little power needed to operate a photoneutralizer that would neutralize 50 or 60% of a negative ion beam in vacuum might be offset by the power saved by the increased neutral fraction the photoneutralizer provides.
REFERENCES

FIGURE CAPTIONS

Fig. 1: Cross sections for charge changing collisions of deuterium ions and atoms with deuterium gas. Note that the cross section σ_{1-1} is too small to show on the graph. (Data taken from Ref. 1).

Fig. 2: The photodetachment cross section for stripping electrons from negative deuterium ions. (Taken from Ref. 2).

Fig. 3: Calculated neutral fractions for combined gas and photo-neutralizers of 0.2, 0.5 and 1.0 MeV negative deuterium ion beams.
Fig. 1

Fig. 2
$F_{PD} = 95\%$

0.2 MeV D$^-$ beam

$F_{PD} = 95\%$

0.5 MeV D$^-$ beam

$F_{PD} = 95\%$

1.0 MeV D$^-$ beam

Gas thickness, torr-cm

Fig. 3
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.