their talent and their genius. All of that, however, requires liberating the mind from the tyranny of intolerance, bigotry, and fear, and opening the doors to free inquiry, tolerance, and imagination.

With centers of excellence in the developing world, there can be real partnerships between North and South. The promise of science can be fulfilled to make the new century one free of hunger and of absolute poverty, accurately described as a condition beneath any definition of human decency. All of that, however, requires our joint commitment as scientists to work for the benefit of the entire human family, not just the privileged minority who are lucky enough to live in the most advanced industrial societies. These tasks are enormous.

Perspectives: The Rice Genome

The Most Precious Things Are Not Jade and Pearls...

Pamela Ronald and Hei Leung

"The most precious things are not jade and pearls but the five grains." The five grains referred to in this Chinese saying are most likely to be rice, wheat, millet, sorghum, and maize. These cereal grains account for up to 60% of the calories consumed by people in the developing world. We could also apply this saying to the valuable genetic information that cereals contain—especially rice. With a genome significantly smaller than those of other cereals, rice is an excellent model for genetic and molecular studies. The publication of draft genome sequences of two major subspecies of rice (indica and japonica) on pages 79 and 92 of this issue (4, 5), provides a rich resource for understanding the biological processes of plants and promises to positively impact cereal crop production.

If the world’s population continues to grow as predicted for the next 20 years, global cereal yield must increase 80% over the 1990 average to feed these additional people (6). Compounding the problem is that areas of productive farmland continue to be lost through urbanization and degradation of existing agricultural soils (7). Although achieving food security will require a multitude of social and economic solutions, the new knowledge derived from genomics research will make an important contribution. The challenge ahead for the plant research community is to design efficient ways to tap into the wealth of rice genome sequence information to address production constraints in an environmentally sustainable manner.

Taxonomically, all cereals belong to one of the two major groups of flowering plants: the monocotyledonous plants (monocots). Completed in 2000, the genome sequence of the weed *Arabidopsis thaliana* provided our first complete view of the genome of a dicotyledonous plant (8). With the availability of the rice genome sequence, we can now directly compare the genome of a monocot to that of a dicot and to genomes of other sequenced organisms. A significant observation is that over 80% of *Arabidopsis* genes have close counterparts (homologs) in rice whereas only 50% of rice genes have homologs in *Arabidopsis*, suggesting that all rice genes are essentially a super-set of *Arabidopsis* genes (4). Furthermore, at a significant level of similarity, 85% of proteins examined in cereals have a related protein in rice (3). This observation poses some interesting questions regarding what the additional rice genes do. Assuming functional conservation, the extensive DNA sequence similarity between rice and other cereals will provide a short cut to the isolation of genes of agronomic importance in cereals as well as in other crop species. Thus, genomewide analyses affirm that rice is indeed a model species for cereal research with practical applications in both monocots and dicots (see the Perspective by Bennett-zen on page 60).

Comparative genomic analysis enables biologists to assign a tentative function to a gene according to what that gene does in another species. For instance, the rice genome sequence reveals a network of genes encoding phosphate transporters, first identified in yeast, that are likely to be important for uptake of this macronutrient from soils (5). Genes controlling disease resistance, tolerance to abiotic stresses, or synthesis of essential vitamins can also be predicted by comparative genome analysis (8–10). This information facilitates the formulation of clearly defined hypotheses regarding which genes govern specific biochemical and metabolic pathways. Experiments can then be designed to determine whether the gene of interest has the predicted contribution to that pathway.

For example, the presence of candidate sequences for phosphate transporters can be tested for correlation with phosphate-uptake efficiency in rice populations exhibiting variability for this trait (11).

The task of the protein encoded by the candidate gene can be further validated by whole plant approaches, typically by overexpressing the gene of interest (by hooking it up to a strong regulatory domain) or by knocking out its function, a field of study called reverse genetics (see the figure). For example, if a gene is hypothesized to govern disease resistance, overexpression of the gene or disruption of its activity should lead to a detectable alteration in resistance to disease, thus confirming the original prediction. Large collections of

References

Improving crops using genomic information. The rice genome sequence provides a starting point for dissectioning the contribution of individual genes to a particular cellular function. This process requires integration of genomewide analytical tools, genetic resources, and biological knowledge of the traits of interest. High-density arrays of oligonucleotides corresponding to all of the predicted genes can be constructed. Such DNA chips can be used to identify genes expressed at a particular point in time, the transcriptome (24). In combination with mass spectrometry, sequence information can be used to systematically identify components of multiprotein complexes (the proteome) and localize them to cellular compartments (25, 26). The function of proteins encoded by candidate genes identified by these approaches or by comparative genome analyses can be verified by reverse genetics. Comparison of multiple alleles can provide information on agronomically useful variants. Finally, this information can be used to introduce the gene of interest (or engineered variants with improved characteristics) into cultivated plant lines through breeding or genetic engineering.

References
1. The Economist (9 March 1991), pp. 83–84
16. www.arabidopsis.org/TAIR.
20. Z. Ha et al., Transgenic Res. 9, 223 (2000).