Formation of metallic copper nanoparticles at the soil-root interface

https://escholarship.org/uc/item/5zt9c7j6

Environmental Science and Technology, 42(5)

Manceau, Alain
Nagy, Kathryn L.
Marcus, Matthew A.
et al.

2008-06-23
Formation of Metallic Copper Nanoparticles at the Soil—Root Interface

ALAIN MANCEAU,*† KATHRYN L. NAGY,† MATTHEW A. MARCUS,§ MARTINE LANSAN,⊥ NICOLAS GEFFROY,† THIERRY JACQUET, …
LGIT-Maison des Géosciences, CNRS and Université J. Fourier, 38041 Grenoble Cedex 9, France. Department of Earth and Environmental Sciences, 845 West Taylor Street, MC-186, University of Illinois at Chicago, Chicago, Illinois 60607, Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, and Phytorestore—Site et Concept, Hôtel Vige Le Brun, 8 rue du Sentier, 75002 Paris, France

Received August 13, 2007. Revised manuscript received November 16, 2007. Accepted December 10, 2007.

Copper is an essential element in the cellular electron-transport chain, but as a free ion it can catalyze production of damaging radicals. Thus, all life forms attempt to prevent copper toxicity. Plants diminish excess copper in two structural regions: rare hyperaccumulators bind cationic copper to organic ligands in subaerial tissues, whereas widespread metal-tolerant plants segregate copper dominantly in roots by mechanisms thought to be analogous. Here we show using synchrotron microanalyses that common wetlands plants *Phragmites australis* and *Iris pseudoacorus* can transform copper into metallic nanoparticles in and near roots with evidence of assistance by endomycorrhizal fungi when grown in contaminated soil in the natural environment. Biomolecular responses to oxidative stress, similar to reactions used to abiotically synthesize Cu0 nanostructures of controlled size and shape, likely cause the transformation. This newly identified mode of copper biominalization by plant roots under copper stress may be common in oxygenated environments.

Introduction

Copper is toxic to life at levels that vary depending on the organism. Humans are mandated to not exceed 1–2 mg/L copper in their drinking water (1, 2), while some freshwater animals and plants experience acute toxic effects at concentrations as low as 10 µg/L (3). Because the human food chain begins with plants, it is critical to understand how plants tolerate heavy metals including copper, which is frequently concentrated in soils as a result of pesticide application, sewage sludge deposition, mining, smelting, and industrial activities. This issue is also at the crux of applying phytoremediation approaches, which use green plants to decontaminate or contain polluted soils and sediments and to purify wastewaters and landfill leachates (4).

Metal-tolerant plants inhibit incorporation of excess metal into photosynthetic tissue by restricting transport across the root endodermis (stele) and by storage in the root cortex (5). In contrast, hyperaccumulating plants extract metals from soils and concentrate excess amounts in harvestable parts such as leaves. Copper detoxification seems to be linked to mechanisms that bind Cu to molecular thiol (SH) groups. Cysteine-rich peptides, such as phytochelatins which transport copper to the shoot, increase in response to high cellular levels of Cu (6, 7), and Cu–S binding occurs in roots and leaves of *Larrea tridentata* (Creosote bush) (8). However, an unidentified copper species, concentrated in electron-dense granules on cell walls and some vacuole membranes, appears to be the main morphological form of copper sequestered in *Oryza sativa* (rice), *Cannabis sativa* (marijuana), *Allium sativum* (garlic), and *Astragalus sinicus* (Chinese milk vetch) (9–12).

Plants take in and exclude elements largely at the soil–root interface within the rhizosphere, i.e., the volume of soil influenced by roots, mycorrhizal fungi, and bacterial communities (13). Deciphering processes that control the bioavailability of metals in the field is difficult because the rhizosphere is compositionally and structurally complex. Here we report on using synchrotron-based microanalytical and imaging tools to resolve processes by which metal-tolerant plants defend themselves against excess cationic copper. We have mapped the distribution of copper in self-standing thin sections of unperturbed soils using micro-X-ray fluorescence (µ-XRF) and identified structural forms of copper at points-of-interest (POIs) using micro-extended X-ray diffraction (µ-XRD). Because only a few small areas could be analyzed in reasonable times with microanalyses, the uniqueness of the microanalytical results was tested by recording the bulk EXAFS spectrum from a sample representing the entire rhizosphere and by simulating this spectrum by linear combination of copper species spectra from POIs.

We investigated copper speciation in rhizospheres of *Phragmites australis* (common reed) and *Iris pseudoacorus*, two widespread wetland species with high tolerances to heavy metals (15). *P. australis* is frequently used to treat wastewaters (16) because it can store heavy metals as weakly soluble or insoluble forms. Its roots can be enriched in Cu 5–60 times relative to leaves, with large differences among ecotypes and between field-grown versus hydroponically grown plants (17, 18). To take into account natural complexity, including any influence of bacteria, fungi, or climate variation, our experiment was conducted outdoors, rather than in a greenhouse on seedlings using ex-solum pots or hydroponic growth methods. The soil was from the Pierrelaye plain, a 1200 ha truck-farming area about 30 km northwest of Paris, France. From 1899 to 1999, regular irrigation of the Pierrelaye plain with untreated sewage water from Paris caused contamination with heavy metals, mainly Zn, Pb, and Cu (19). Such pollution is pervasive worldwide because increasing populations and associated economic growth are diminishing available freshwater, thus leading to increased irrigation of farmlands with wastewaters.

Experimental Methods

Field Experiment. A detailed description of the phytoremediation experiment is given in Supporting Information.
X-ray Fluorescence. Elemental distributions in the initial soil and rhizospheric soils vegetated with *Phragmites australis* and *Iris pseudoacorus* were mapped by scanning several 30-µm-thick thin sections under a 10.0 keV (vegetated soil) or 13.05 keV (unvegetated soil) micro-X-ray beam while recording the X-ray fluorescence. The soil is rich in organic debris from past agricultural activity which causes it to be optically inhomogeneous over a few to several hundreds of micrometers. Therefore, both coarse and fine µ-XRF maps were recorded at resolutions from 35 × 35 µm² to 4 × 4 µm² using a beam dimension adjusted from 16 (H) × 10 (V) µm² to 5 (H) × 5 (V) µm² to match the step size. The counting time per pixel was 100 ms at 10.0 keV and 200 ms at 13.05 keV. The scanning speed was fast enough to prevent alteration of the initial Cu speciation by beam damage.

EXAFS Spectroscopy. In the µ-EXAFS measurement, the organically bound Cu species evolved over 30–45 min due to the instability of organic matter to intense X-ray radiation. Radiation damage was minimized by reducing scan times to 20 min per analyzed area and moving the sample by 15 µm along the direction of an organic particle to access fresh material for every scan. Caution was taken that all individual spectra averaged out before summing to improve statistics. For bulk EXAFS measurements, samples were frozen at 10 K. All spectra were recorded in fluorescence-yield detection mode, except those from the Cu grains (µ-EXAFS), which were recorded in transmission mode.

X-ray Diffraction. Diffraction patterns were recorded in transmission mode with a Bruker 6000 CCD binned to 1024 × 1024 pixels.

Results and Interpretations

X-ray Fluorescence. In the initial soil, copper occurs in two morphological forms (Figure 1a). One form decorates coarse organic debris from past agricultural activity, and the other occurs in the rhizospheric region of *Phragmites australis* and *Iris pseudoacorus*. The inset shows a reticular structure mapped at high resolution (9 × 9 µm²). (a) Green features are organic matter (resolution = 20 × 20 µm²). The central stele region contains Zn but no Cu. (c) Although Zn occurs in the main roots of *I. pseudoacorus*, Cu is located in ramified organic filaments typical of mycorrhizal fungi and in a biofilm at the surface of the root (resolution = 8 × 8 µm²). (d) Enlargement of the region rich in organic filaments showing two anastomosed hyphae. (e) Optical micrograph of one anastomosed hypha from panel d with fluorescence map in inset.

Data collected on beamline 10.3.2 of the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (62).
the fine clayey matrix in areas that show organic particulate shapes only at high μ-XRF resolution. In the two phytore-mediated soils, similar Cu–organic particulate associations, but also, hot spots of Cu grains 5–20 μm in size were observed in the thin-section maps (Figure 1b–d). In the rhizosphere of *P. australis*, the Cu hot spots exist outside and in roots and specifically in cortical parenchyma, but not in central vascular cylinders from the stele that contain vascular bundles through which micronutrients are transported to reproductive and photosynthetic tissues. In contrast, the main roots and rhizome of *I. pseudacorus* do not contain detectable Cu grains, but in the surrounding soil Cu grains are aligned, suggesting that they are associated with biological structures. Under an optical microscope filamentous and ramified organic structures, similar to root hairs or hyphae from endomycorrhizal fungi, are visible in places where the Cu spots were observed by μ-XRF (Figure 1e, Supporting Information). Fungal forms are more likely because mycorrhizal hyphae typically are anastomosing, whereas root hairs are not. Fungi may also be implicated in the formation of Cu grains in the cortex of *P. australis* since roots of this plant are known to be colonized by arbuscular endomycorrhizae in contaminated environments (20). These hypotheses are consistent with the capacity of mycorrhizae to accumulate metals (21–23) and with the storage of Cu in secondary feeder roots of the water hyacinth *Eichhornia crassipes* (24). The Cu grains have about the same size as the electron-dense Cu granules (~2 μm) in cells of *E. splendens* placed in a CuSO₄ solution for 30 days (12).

EXAFS Spectroscopy. Organic Cu. While biological activity clearly modified the original distribution of Cu in the rhizospheres, the Cu species could not be identified from the μ-XRF maps but instead were elucidated using EXAFS spectroscopy. All eight μ-XRF spectra from areas in the original soil containing the particle morphologies and chemical compositions observed with μ-XRF can be super-imposed on the soil’s bulk EXAFS spectrum (Figure 2a), indicating that the initial Cu speciation occurred uniformly. If the initial soil contained various assemblages of Cu species that were distributed unevenly, then we might expect that the proportions of species also would have varied among analyzed areas and been detectable by μ-XRF spectroscopy (25); however, this was not observed. These spectra match those for Cu²⁺ binding to carboxyl ligands in natural organic matter, as commonly observed (Supporting Information).

Elemental Cu. In contrast, only the reference spectrum of elemental copper (Cu⁰) matches the μ-EXAFS spectra of the 12 hot-spot Cu grains, which are statistically invariant (Figure 2b, Supporting Information). Photo reduction of Cu²⁺ in the X-ray beam cannot explain the formation of Cu⁰ because (i) no elemental Cu was detected in the initial soil by powder μ-EXAFS, and (ii) Cu⁰ was detected in the two phytore-
mediated soils at 10 K by bulk EXAFS, and all individual spectral scans from the same sample could be superimposed. At 10 K, radiation damage is delayed (14), and if Cu had been reduced in the beam, the proportion of Cu° would have increased from scan to scan which was not observed.

Spectra for rhizosphere Cu grains and reference metallic copper have the same phase and overall line shape, but they have significant differences in fine structure and amplitude, which provide details about the nature of the Cu grains. In the soil Cu grains, shoulders at 5.8 and 7.3 Å⁻¹ are weak and the spectral amplitude is reduced by about 35% and attenuated, relative to metallic copper. The decreased amplitude of the EXAFS signal for the Cu grains relative to well-crystallized metallic copper cannot arise from overab- sorption (14) because the spectra of the grains were recorded in transmission mode and because the amplitude reduction from oversorption would be uniform in R-space, as demonstrated for ZnS and MnO₂ particles (26, 27), which does not occur in this case.

Derived radial structure–functions share the four-peak character of Cu metal (26) (Figure 2c). However, long-distance pair correlations (i.e., the high-frequency components in κ space) are progressively diminished in the soil spectra, indicating multiple interatomic distances (structural disorder), reduced coordination numbers (CNs) from small particles (size effect), and/or abundant microstructural defects, such as grain and twin boundary dislocations or atomic-scale vacancies.

Simulation of the data using multiple-scattering ab initio FEFF calculations showed no evidence for structural disorder (Supporting Information). Good agreement between calculated and observed spectra was obtained with a first nearest-neighbor shell (1NN) of 7.8 Cu atoms at 2.55 Å, a second shell (2NN) of 2.7 Cu at 3.61 Å, a third shell (3NN) of 9.2 Cu at 4.43 Å, and a fourth shell (4NN) of 39.9 Cu at 5.11 Å, compared to 1NN of 12 at 2.53 Å, 2NN of 6 at 3.61 Å, 3NN of 24 at 4.43 Å, and 4NN of 12 at 5.11 Å, in crystalline Cu metal. The mean-square displacement of bond length parameter (σ²), a measure of disorder, converged in the simulated spectra to the same value as in the Cu metal reference (0.01 Å²) showing that Cu–Cu bonds vary in length by the same amount in the soil grains and reference.

Although the rhizosphere Cu grains are not structurally disordered, their CNs are only 65% (1NN), 45% (2NN), 38% (3NN), and 32% (4NN) of those in the Cu metal spectrum, indicating that structural order is limited in extent. The lower CN values are consistent with small particles having incompletely coordinated surface atoms. If closed-shell packed and monodispersed, these particles would have a minimum size of 10–15 Å assuming a spherical cuboctahedron shape and 15–20 Å assuming a hemispherical shape, as reported for nanoscale platinum particles (29). If Cu atoms were missing (e.g., atomic vacancies), as reported for Fe metal powders with a first-shell CN reduced by up to 50% of that in metallic Fe, the effective particle size could be as high as ca. 100 Å in diameter (30). A defective nanoparticle model is appealing because the surface area–to-volume ratio increases with only a lattice-vacancy parameter.

Constitutive nanoparticles in the micrometer-sized Cu grains are joined at particle or so-called grain boundaries, which might contain stabilizing organic molecules. Complexation of Cu to sulfur ligands in the interparticle or surficial regions is unlikely because a low-R Fourier component from Cu–S pairs at 2.2–2.3 Å was not observed on the radial structure–function (8). Also, the first Cu–Cu distance of 2.56 Å in the Cu nanoparticle is shorter than the distance of 2.70–2.90 Å reported for Cu–thiolate clusters (8, 31) and matches only that in elemental copper. In addition, organic S or P was not observed in the Cu grains using scanning electron microscopy–energy dispersive X-ray fluorescence (SEM-EDX) in agreement with observations on electrodeposited Cu granules in plants using electron energy loss spectroscopy (EELS) and EDX (10, 12). Complexation to oxygen ligands is possible because EXAFS has relatively low sensitivity to low-Z atoms. However, linear combinations of experimental spectra for organically bound Cu° and nonmetallic Cu show that the fraction of potential organic Cu in the Cu grains is less than 15%, if present at all (Supporting Information).

Amounts of Organic and Elemental Cu in the Rhizospheres. Composite bulk EXAFS spectra of the two remediated soils and spectra from the two species identified by µ-EXAFS (Figure 2d) intersect at the same k values, confirming that only two main Cu species exist in both rhizospheres. Fractional amounts of organically bound Cu from the original soil and metallic Cu formed during phytoremediation were estimated by reconstructing the bulk spectra with linear combinations of the two single species spectra. The best fit for the rhizosphere of P. australis was obtained with 75 ± 10% organic-bound Cu° and 25 ± 10% Cu²⁺. The rhizosphere of I. pseudoacorus contains slightly less Cu²⁺ (20 ± 10%).

X-ray Diffraction. Featureless two-dimensional µ-XRD patterns from eight Cu hot spots confirm that the Cu grains are aggregates of nanoparticles. However, three patterns display a faint continuous diffraction ring at the Bragg angle for the brightest 111 reflection of Cu metal, indicating larger individual particles with a domain size of 130–150 Å (Figure 3). About 25 × 10⁴ larger particles would be needed to produce these XRD patterns, but they would comprise only about 0.01% of the analyzed volume (Supporting Information). Thus, the diffracting Cu hot spots may have sufficient big particles to yield a powder ring, but they are not enough for their 2NN, 3NN, and higher Cu–Cu shells to contribute significantly to the EXAFS signal. Also, the big particles are underestimated by µ-EXAFS signal analysis (Figure 2d) because the spectral amplitude is reduced by about 35% and na-
could also be a defense against toxic copper, but reports of Cu\(^+\) and Cu\(^{2+}\) biominerals are rare; only copper sulfide in yeast (37) and copper oxalate in lichens (38) and fungi (23) are known. Atacamite (Cu\(_3\)(OH)\(_2\)Cl) in worms (39) does not appear to result from a biochemical defense.

Biominalization of copper metal may have occurred by a mechanism analogous to processes for metallic nanoparticle synthesis that exploit ligand properties of organic molecules. In these processes, organic molecules are used as templates to control the shape and size of metallic nanoparticles (40, 41) formed by adding strong reductants to bound cations. For copper nanoparticles and nanowires, a milder reductant—ascorbic acid—has been used. Ascorbic acid, a well-known antioxidant, reduces Cu cations to Cu\(^0\) only when the cations are bound to organic substrates such as DNA in the presence of oxygen in the dark (42) or via autocatalysis on Cu metal seeds in the absence of stabilizing organic ligands (43). As an example of synthetic control, pH-dependent conformation of histidine-rich peptides has led to larger nanocrystals of Cu\(^0\) at pH 7–10 than at pH 4–6 (44).

Plants produce ascorbic acid for many functions (45) and rhizospheres often contain the breakdown products of ascorbic acid, which facilitates electron transfer during mineral weathering (46). Plants produce more ascorbic acid when grown in soils contaminated with heavy metals including copper (47). Fungi, which proliferate over plants (48) and bacteria (23) in metal-contaminated soils, can stabilize excess copper (49) by extracellular cation binding or oxalate precipitation (23), but mechanisms probably also require enzymes, thiol-rich proteins and peptides, and antioxidants (23, 48, 50). The formation of electron-dense Cu granules within hyphae of arbucular mycorrhizal fungi isolated from Cu- and As-contaminated soil (51) suggests that fungi also can produce nanoparticulate copper.

Some copper reduction possibly occurred in response to the European heat wave of the summer of 2003 (Supporting Information). Elevated expression of heat shock protein HSP90 and metallothionein genes has been observed in hypos of an arbuscular mycorrhizal fungus in the presence of 2 × 10\(^{-5}\) M CuSO\(_4\) in the laboratory (52). This suggests that a single driving force can trigger a biological defense mechanism that has multiple purposes. Thus, reduction of toxic cations to native elements may increase as rhizosphere biota fight metal stress and stresses imposed by elevated temperatures expected from global warming.

Reduction of Other Metal Cations to Their Metallic Forms. Laboratory evidence has shown that plants (53–55), fungi (23, 56, 57), bacteria (58), and algae (59) can transform other more easily reducible metals, including Au, Ag, Se (as H\(_2\)SeO\(_3\)), Hg, and Te, to their elemental states both intra- and extracellularly. When mechanisms have been proposed, they typically have involved enzymes; however, ascorbic acid was implicated when Hg\(^{2+}\) was transformed to Hg\(^0\) (g) in barley leaves (60). Theoretically all of these metal cations could be transformed by a reducing agent weaker than ascorbic acid (Table S1 in Supporting Information). However, binding appears to stabilize cationic forms in the absence of a sufficiently strong reductant such as ascorbic acid. Processes used in materials synthesis that were developed with biochemical knowledge might yield clues to other possible, but presently unknown, biologically mediated reactions in different organisms.

Natural Occurrence of Cu\(^0\) and Environmental Implications. The discovery of nanoparticulate copper metal in phytoremediated soil may shed light on the occurrence of copper in peats. Native copper likely forms abiotically in the reducing acidic environments of Cu-rich peat bogs (61). However, swamps by definition are more oxidizing with species unidentifiable by XRD were dissolved only with corrosive perchloric acid (61), suggesting they may have been nanoparticulate metal formed by active root systems of swamp plants. If swamp peats evolve to bog peats the Cu reduction mechanism could convert to autocatalysis on the
initial nanocrystals (43). The addition of peats that either act as templating substrates or contain nanoparticulate copper could enhance the effectiveness of using wetlands plants for phytoremediation. In contrast to harvesting hyperaccumulators, the oxygenated rhizosphere would become an economic source of biorecycled copper, and rhizosphere containment would prevent copper from entering the food chain via herbivores, limiting potential risks to humans.

Acknowledgments
The authors thank J. L. Hazemann (ESRF), O. Proux (ESRF), and S. Fakra (ALS) for assistance during EXAFS measurements and the ESRF and ALS for the provision of beamtime. The ALS is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Support was provided to A. Manceau from the ANR-ECCO program and to K. L. Nagy from U.S. National Science Foundation grant EAR-0447310.

Supporting Information Available
Additional information on the field site, and data interpretations, including thermodynamic calculations of Cu speciation in the soil solution. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

(52) Hildebrandt, U.; Regvar, M.; Bothe, H. Arbuscular mycorrhizal colonization and heavy metal tolerance. Phytochemistry 2007, 68, 139–146.