Title
CYCLOPEPTIDE ALKALOIDS. PHENCYCLOPEP-TINES FROM CEANOTHUS SANGUINEUS

Permalink
https://escholarship.org/uc/item/60m250j9

Author
Lagarias, J.C.

Publication Date
1979-08-01
Submitted to the Journal of Natural Products

CYCLOPEPTIDE ALKALOIDS. PHENCYCLOPEPTINES FROM CEANOTHUS SANGUINEUS

J. Clark Lagarias, Dane Goff and Henry Rapoport

August 1979

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
CYCLOPEPTIDE ALKALOIDS. PHENCYCLOPEPTINES FROM
CEANOTHUS SANGUINEUS.

J. Clark Lagarias, Dane Goff and Henry Rapoport*

Department of Chemistry and Lawrence Berkeley Laboratory,
University of California, Berkeley, California 94720
ABSTRACT. -- Field desorption mass spectroscopy has identified five phencyclopeptines in the crude alkaloidal extracts of Ceanothus sanguineus. A new paired-ion HPLC system for the separation of these alkaloids is discussed. Amino acid analysis, electron impact mass spectroscopy, and 1H NMR spectroscopy have established the structures of six phencyclopeptines including two isomeric compounds 5 and 6. The structure of 2 has not been previously reported.
Ceanothus sanguineus Pursh., a species of the family Rhamnaceae commonly known as Redstem Ceanothus for its red-purple branches, inhabits wooded slopes, open hills, flats, and ledges from Northern California northward into British Columbia, and eastward into Idaho and Montana (1). In the present report, as part of a systematic study of the alkaloids of Californian Ceanothus species, we describe the identification of six cyclopeptide alkaloids from crude extracts of the root bark of this shrub. Before chromatographic separation however, the number and nominal masses of the constituents of the crude acidic extract were ascertained by field desorption (FD) mass spectrometry (2). This composite FD mass spectrum of the alkaloidal mixture revealed the presence of five major components with molecular ions m/e 504, 520, 534, 559, and 573 (Figure 1). After high performance liquid chromatography (HPLC) (Figure 2), the structures of phencyclopeptines 1-6, including those of the two isomers with molecular weight of 534 (Table 1), were established by electron impact (EI) mass spectrometry, 1H NMR spectroscopy, and amino acid analysis. Of the six components, five have been previously reported (3-7) while 2 is a new compound.
EXPERIMENTAL

PLANT MATERIAL. -- Root bark of *C. sanguineus* was collected from plants in Klamath National Wilderness on Hawkinsville Road, 5.5 miles west of Hawkinsville on Humbug Mountain.

EXTRACTION PROCEDURE. ISOLATION OF CRUDE ALKALOIDAL CONSTITUENTS. -- The extraction procedure, as described in an earlier report (4) was used. The total crude alkaloid yield was 0.22% of the root bark.

FIELD DESORPTION MASS SPECTROSCOPY. -- As shown in Figure 1, the FD mass spectrum of the crude alkaloidal mixture reveals five major components with nominal masses as follows: m/e 504, 520, 534, 559 and 573.

HPLC ISOLATION OF PHENCYCLOPEPTINES. -- Preparative HPLC was performed with two systems (Figure 2).

System one used a LiChrosorb RP-18 column (10µ, 10x250 mm, E.M. Merck). The crude alkaloidal mixture was dissolved in methanol and filtered through a 5 micron teflon filter. Injection volumes ranged from 100 to 200 µl at a concentration of 3-4 mg/ml. The mobile phase was a 65/35 (v/v) mixture of 0.015M aqueous perfluoro- butyric acid and acetonitrile. The chromatography was done at room temperature with a flow rate of 1-2.5 ml/min. Alkaloidal components were detected at 254 nm. Figure 2 shows a typical HPLC tracing.

The collected fractions were evaporated in vacuo and the residues were dissolved in 1.5M NH₄OH (4 ml) and extracted with CH₂Cl₂ (3x1.5 ml). The combined organic layers were extracted with H₂O (1x1.5 ml) and then dried under a stream of nitrogen.

The second system used a Waters Porasil column (10µ, 3.2x250 mm).
The crude alkaloidal mixtures were dissolved in CHCl₃, and chromatography was performed at 37-41°C with a mobile phase of CHCl₃/hexane/triethylamine, 95/5/0.1. Alkaloids were detected at 280 nm as shown in Fig. 2. Fractions collected were immediately evaporated in vacuo and dried under high vacuum. Relative weight percents of C. sanguineus phencyclopeptines (HPLC System 2) were 1 (37%), 2 (3%), 3 (12%), 4 (43%), 5 and 6 (6%).

STRUCTURES OF PHENCYCLOPEPTINES FROM C. sanguineus. 3

5-Benzyl-8-N-(N'-methylprolyl)-9-isopropylphencyclopeptine (Ceanothine B). 1. C₂₉H₃₆N₄O₄; mp 225°, lit. (8) mp 238.5-240.5°; MS: M⁺ C₂₉H₃₆N₄O₄ requires 504.2736, found 504.2795, BP C₅H₁₀N requires 84.0813, found 84.0809; amino acid analysis 110°C/16 h: phenylalanine (1.0); HPLC-system, retention time in min: 1, 19.5; 2, 4.5 (Figure 2); ¹H NMR (CDCl₃) - 0.91 (d, 3H, J=6.7Hz, R₉-CH₃), 1.24 (d, 3H, 6.7Hz, R₉-CH₃), 1.63 (m, 1H, R₉-CH), 1.7-1.9 (m, 2H, R₈-Y₁ CH₂ and β₁ CH₂), 1.98 (s, 3H, N-CH₃), 2.1-2.2 (m, 1H, R₈-Y₂ CH₂), 2.2-2.3 (m, 1H, R₈-β₂ CH₂), 2.68 (dd, 1H, 4.3Hz, 10.6Hz, R₈-δ₁ CH₂), 2.85 (dd, 1H, 8.2Hz, -14.7Hz, R₅-CH₂), 3.01 (m, 1H, R₅-Y₁ CH₂ and β₁ CH₂), 3.08 (dd, 1H, 4.2Hz, -14.7Hz, R₅-CH₂), 4.3-4.4 (m, C₅-H), 4.34 (dd, 1H, 7.0Hz, 10.0Hz C₈-H), 4.93 (dd, 1H, 2.0Hz, 7.0Hz C₉-H), 5.99 (d, 1H, 6.9Hz Cl-H), 6.39 (d, 1H, 7.4Hz R₈-αCH), 6.4-6.5 (m, N₃-H), 6.66 (m, 1H, C₂-H), 7.0-7.3 (m, 9H, aromatic, R₅-φ, C₁₂,₁₃, 15,16-H's), 7.75 (d, 1H, 10.0Hz, C₈-NH). This nmr spectrum is identical with that obtained from an authentic sample of Ceanotheine B from Ceanothus americanus Linn. (3).

5-sec-Butyl-8-N-(N'-methylphenylalanyl)-9-isopropylphencyclopeptine 2. C₃₀H₄₀N₄O₄; mp 229°; MS: M⁺ m/e 520, M-91 C₂₃H₃₃N₄O₄
requires 429.2502, found 429.2506, BP C$_9$H$_{12}$N requires 134.0970, found
134.0966; amino acid analysis 110°C/16 h: isoleucine (1.0); HPLC-1,
24.0; 2, 2.5 (Figure 2).

5-β-Indolylmethyl-8-N-(N′,N′-dimethylvalyl)-9-isopropylphenycyclo-
peptine 3. C$_{32}$H$_{41}$N$_5$O$_4$; mump 229°, lit. (4) mump 233°; MS: M$^+$ m/e 559,*
M-2H C$_{32}$H$_{39}$N$_5$O$_4$ requires 557.3002, found 557.2957, M-43 m/e 516, BP
C$_6$H$_4$N requires 100.1126, found 100.1125; amino acid analysis 110°C/
16h: no amino acids observed; HPLC-1, 24.0; 2, 18.7 (Figure 2).

5-β-Indolylmethyl-8-N-(N′,N′-dimethylisoleucyl)-9-isopropylphen-
cyclopeptine (Discarine B) 4. C$_{33}$H$_{43}$N$_5$O$_4$; mump 233°, lit (4)
mump 233°; MS: M$^+$ C$_{33}$H$_{43}$N$_5$O$_4$ requires 573.3315, found 573.3264,
M-57 C$_{29}$H$_{34}$N$_5$O$_4$ requires 516.2611, found 516.2644, BP C$_7$H$_{16}$N requires
114.1283, found 114.1281; amino acid analysis analysis 110°C/16h:
tryptophan (low recovery); HPLC-1, 26.7; 2, 11.1 (Figure 2); 1H NMR
identical with previously reported spectra (4,9).

5-Isobutyl-8-N-(N′,N′-dimethylphenylalanyl)-9-isopropylphen-
cyclopeptine (Frangufoline) 5 and 5-sec Butyl-8-N-(N′,N′-dimethyl-
phenylalanyl)-9-isopropylphenycyclopeptine (Adouetine-Y') 6.*

C$_{31}$H$_{42}$N$_4$O$_4$; MS: M$^+$ m/e 534, M-91 C$_{24}$H$_{35}$N$_4$O$_4$ requires 443.2658,
found 443.2649, BP C$_{10}$H$_{14}$N requires 148.1126, found 148.1118; mump
261° (lit. (6) mp 289-290° for 5, and lit. (10), 244° for 6; amino
acid analysis 110°C/16h: ile/leu, 2/1; 1H NMR, high field region:
δ 0.38 (d, 2H, J=6.7 Hz, ileu-γ-CH$_3$), 0.60 (d, 1H, 6.7 Hz leu δCH$_3$),
0.64 (d, 1H, 6.7Hz leu δCH$_3$), 0.68 (m, 2H, ile δCH$_3$), 1.01 (d, 3H,
J=6.4Hz, R9-Me), 1.27 (d, 3H, J=6.7Hz, R9-Me); TLC Analtech Silica
Gel G (250) eluant, CHCl$_3$/Et$_2$O/MeOH, 45/15/1, R$_f$ 0.40 (5) and 0.33
(6), lit. (9) R$_f$ 0.66 (5); 0.58 (6); lit. (11) R$_f$ 0.44 (5); 0.35 (6);
HPLC-1, 33.5; 2, 3.2 (Figure 2).
DISCUSSION

In contrast to mass spectrometry methods used in previous phytochemical investigations of Ceanothus, we have employed field desorption (FD) mass spectrometry as a means to rapidly determine the alkaloid composition in crude extracts (2). The FD analysis of crude alkaloidal mixtures from Ceanothus sanguineus revealed parent ions of five phencyclopeptines (Figure 1). Given this result, the development of a chromatographic system to resolve all five components became our initial goal.

When the reversed phase HPLC system using 0.001% NH₄OH (aq)/acetonitrile mixtures (4) proved unsuccessful, a paired-ion, reverse phase HPLC system using 0.01N perfluorobutyric acid/acetonitrile mixtures was devised (Fig. 2, system 1). The use of perfluorobutyric acid decreased column degradation and tailing of peaks observed with the alkaline eluants. In addition, this paired-ion proved to be superior to the sulfonic acids due to its high volatility and ease of removal. A silica HPLC system was employed to separate phencyclopeptines 2 and 3 which co-chromatographed in system 1 (Figure 2, system 2).

The structural assignments of the HPLC-purified phencyclopeptine components of Ceanothus sanguineus are based primarily on their characteristic electron impact mass spectra (Table 2). With the exception of the tryptophan-containing phencyclopeptines 2 and 3, the assignment of the ring amino acid residue (R₅) is based on acidic hydrolysis of the purified phencyclopeptine followed by amino acid analysis. Amino acid analysis reveals that the two isomeric phencyclopeptines, frangufoline 5 and adouetine Y' 6,
which are unseparable by reversed phase HPLC (Figure 2, system 1), are present in a ratio of 1 to 2, respectively. Further evidence for the mixture of these two isomers is provided by 1H NMR spectroscopy and thin layer chromatography. As shown in Figure 3 the two doublets at 0.59 and 0.64 ppm have been assigned to the leucine δ-methyl groups of frangufoline 5, in agreement with the reported values of 0.60 and 0.65 ppm (12). The assignments of the doublet at 0.38 ppm and the multiplet at 0.69 ppm to the isoleucine γ- and δ-methyl groups of adouetine-γ' 6 are consistent with the literature (10). Integration of these signals confirms the 1 to 2 ratio of leucine to isoleucine indicated by amino acid analysis. The two large doublets at 1.01 and 1.27 ppm (Figure 3), assigned to the R_9 methyls of both 5 and 6, are consistent with the literature values of 0.99 and 1.25 ppm for 5 (12) and 0.99 and 1.23 ppm for 6 (10). Furthermore, silica tlc (CHCl$_3$) of this mixture of isomers reveals two spots with R_f 0.40 and 0.33, which agrees well with the reported chromatographic data for these two phencyclopeptines (10).

In an earlier report describing the isolation and characterization of alkaloids from Ceanothus integerrimus, the chemotaxonomic utility of the phencyclopeptides was discussed. In the future, the use of Field Desorption/Collision Induced Dissociation (FD/CID) Mass Spectrometry employing the linked B/E scan (2) may provide a useful and rapid approach to the analysis of individual phencyclopeptines in crude plant extracts without the need for chromatographic separation.
ACKNOWLEDGEMENTS

FD mass spectral data was obtained through a NIH Division of Research Resources Grant No. RR00719 to Dr. A. L. Burlingame. We thank Dr. Ken Straube for acquiring FD spectra. Willy C. Shih and S. W. Amin were of great assistance in the acquisition of nmr spectra. We are especially indebted to Dr. Frederick K. Klein for the collection of plant material and the isolation of total crude alkaloids.
Footnotes

1 HPLC was performed with a Spectra Physics Model SP 3500B chromatograph and a model 748 oven, Santa Clara, CA. UV absorbance was monitored with an Altex Model 151 Dual Wavelength Detector, Altex Scientific Inc., Berkeley, CA. HPLC grade solvents obtained from Burdick and Jackson Laboratories, Muskegon, MI; perfluorobutyric acid from ICN Pharmaceuticals, Inc., Plainview, N.Y.; and water purified with a Milli-Q system, Millipore Corp., Bedford, MA, were used for HPLC. Uncorrected micromelting points (°mmp) were determined on a Kofler Micro Hot Stage. A model AEI-MS12 mass spectrometer, AEI Scientific Apparatus Ltd., Manchester, England with INCOS Data System and a Hitachi M-52 mass spectrometer were used for low resolution mass spectrometry. High resolution EI mass spectrometry was obtained at the Space Sciences Laboratory, Biomedical Mass Spectrometry Resource, University of California, Berkeley on a Kratos/AEI-MS-902 mass spectrometer with a Logos-2 Data System interfaced with a Xerox Sigma 7 Computer. FD mass spectra were acquired on the same instrument equipped with a combined FD-EI ion source.

Amino acid analyses were performed on a Beckman 120C Chromatograph, Fullerton, CA. H NMR were taken in CDCl₃ solution (CHCl₃ at 7.25 ppm) at 22°C on a homemade spectrometer based on a Bruker 63-KG magnet operating at 270 MHz with a Nicolet 1180 data system. Evaporations were done in vacuo with a Buchi rotary evaporator.

2 The plant material was collected and extracted by Frederick K. Klein.
For complete mass spectra see Table 2. For amino acid analyses, each fraction was hydrolyzed with 1 ml 6N HCl with 50 μl 5% phenol (aq) for 16 h at 110°C in an evacuated ampule.

In reference 10 the authors give the name Myrianthine B to a compound of the same structure named Adouetine Y' in an earlier report (7).
LITERATURE CITED

Table 1. Phencyclopeptines of Ceanothus sanguineus

<table>
<thead>
<tr>
<th></th>
<th>R₅</th>
<th>R₈</th>
<th>R₉</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₂C₆H₅</td>
<td>NMePro</td>
<td>CH(CH₃)₂</td>
<td>504</td>
</tr>
<tr>
<td>2</td>
<td>5-sec Butyl-8-N(N'-methylphenylalanyl)-9-isopropylphencyclopeptine (Ceanotheine-B)⁵</td>
<td>CH(CH₃)CH₂CH₃</td>
<td>NMePhe</td>
<td>CH(CH₃)₂</td>
</tr>
<tr>
<td>3</td>
<td>CH(CH₃)CH₂CH₃</td>
<td>-β-indolyl-CH₂</td>
<td>NMe₂Val</td>
<td>CH(CH₃)₂</td>
</tr>
<tr>
<td>4</td>
<td>-β-indolyl-CH₂</td>
<td>NMe₂Ileu</td>
<td>CH(CH₃)₂</td>
<td>573</td>
</tr>
<tr>
<td>5</td>
<td>CH₂CH(CH₃)₂</td>
<td>NMe₂Phe</td>
<td>CH(CH₃)₂</td>
<td>534</td>
</tr>
<tr>
<td>6</td>
<td>CH(CH₃)CH₂CH₃</td>
<td>NMe₂Phe</td>
<td>CH(CH₃)₂</td>
<td>534</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fragment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>M<sup>+</sup></td>
<td>504</td>
<td>520</td>
<td>559</td>
<td>573</td>
<td>534</td>
</tr>
<tr>
<td>BP a</td>
<td>84</td>
<td>134</td>
<td>100</td>
<td>114</td>
<td>148</td>
</tr>
<tr>
<td>b</td>
<td>461</td>
<td>429</td>
<td>516</td>
<td>516</td>
<td>443</td>
</tr>
<tr>
<td>c</td>
<td>195</td>
<td>181</td>
<td>195</td>
<td>195</td>
<td>195</td>
</tr>
<tr>
<td>d</td>
<td>167</td>
<td>153</td>
<td>167</td>
<td>167</td>
<td>167</td>
</tr>
<tr>
<td>e</td>
<td>337</td>
<td>303</td>
<td>376</td>
<td>376</td>
<td>303</td>
</tr>
<tr>
<td>f</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>g</td>
<td>421</td>
<td>387</td>
<td>460</td>
<td>460</td>
<td>387</td>
</tr>
<tr>
<td>h</td>
<td>308</td>
<td>274</td>
<td>347</td>
<td>347</td>
<td>274</td>
</tr>
<tr>
<td>i</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>j</td>
<td>378</td>
<td>344</td>
<td>417</td>
<td>417</td>
<td>344</td>
</tr>
<tr>
<td>k</td>
<td>244</td>
<td>210</td>
<td>283</td>
<td>283</td>
<td>210</td>
</tr>
<tr>
<td>l</td>
<td>216</td>
<td>182</td>
<td>255</td>
<td>255</td>
<td>182</td>
</tr>
<tr>
<td>m</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td>170</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>120</td>
<td>86</td>
<td>159</td>
<td>159</td>
<td>86</td>
</tr>
<tr>
<td>p</td>
<td>91</td>
<td>130</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>519<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>489<sup>b</sup></td>
<td>463<sup>d</sup></td>
<td></td>
<td></td>
<td>370<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>475<sup>c</sup></td>
<td>133<sup>e</sup></td>
<td></td>
<td></td>
<td>398<sup>g</sup></td>
</tr>
</tbody>
</table>

^a Fragment ions according to fragmentation scheme in ref. (4).
^b M⁺-15 ^c M⁺-29 ^d M⁺-C₄H₉ ^e a-H ^f g-OH ^g b-NH(CH₃)₂
Fig. 1. Field desorption mass spectrum of the crude acidic, alkaloid extract of *Ceanothus sanguineus* (emitter current 16mA).
Fig. 2. HPLC of crude alkaloidal mixtures from *C. sanguineus*.

HPLC systems employed: 1) LiChrosorb RP-18 (10μ, 10 x 250 mm); mobile phase 0.015M perfluorobutyric acid/CH₃CN (6/4 v/v); flow rate 1.6 ml/min/25°C; A 254 nm; injection volume 10 μl; C=3.8 mg/ml.

2) Waters Porasil (10μ, 3.2 x 280 mm); mobile phase CHCl₃/hexane/triethylamine (95/5/0.1 v/v); flow rate 1.6 ml/min; 41°C; A 280 nm; injection volume 10 μl, C=3.5 mg/ml.
Fig. 3. Expanded view of high field region of ^1H NMR of 2:1 Myrianthine-B 6 and Frangulanine 5 mixture.
may be suitable.

Department of Energy to the exclusion of others that
product by the University of California or its U.S.
not imply approval or recommendation of the
reference to a company or product name does

Laboratory of the Department of Energy
the University of California. The Lawrence Berkeley
author(s) and is not necessarily that of the Department of
expressed in this report represent only those of the
Department of Energy. Any conclusion of opinion

This report was done with support from the