Lawrence Berkeley National Laboratory
Recent Work

Title
THE GROUND-STATE SPIN OF 163Er

Permalink
https://escholarship.org/uc/item/6167x80q

Authors
Stein, Sanford
Ramsey, Alan T.

Publication Date
1968-01-31
THE GROUND-STATE SPIN OF ^{163}Er

Sanford Stein and Alan T. Ramsey

January 31, 1968
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE GROUND-STATE SPIN OF 163Er
Sanford Stein and Alan T. Ramsey
January 31, 1968
THE GROUND-STATE SPIN OF 163Er

Sanford Stein and Alan T. Ramsey†

Lawrence Radiation Laboratory
University of California
Berkeley, California

January 22, 1968

ABSTRACT

The ground-state nuclear spin of 75-min 163Er has been measured and found to be $I = 5/2$, in agreement with the Nilsson state assignment for the 95th neutron.
INTRODUCTION

The rare earths have been subject to considerable study, both because of interest in the atomic properties of the f^{27} and f^{26} d configuration, and because the region around $A = 150$ is characterized by large nuclear deformations which offer a good test for the Nilsson model of strongly deformed nuclei. In erbium, work has been done on 165Er (Ref. 1), 167Er (Ref. 2), 169Er (Ref. 3), and 171Er (Ref. 4). Erbium-169, which has spin $I = 1/2$, has been used to determine g_J to high accuracy. In this paper we report on a measurement of the spin of the ground state of 163Er by the atomic beam magnetic resonance method.

EXPERIMENTAL METHOD

Erbium-163 has a half-life of 75 minutes, and decays by β^+ emission to 163Ho (half-life > 103 years), which decays by electron capture to stable 163Dy. 163Er was made by bombarding stable 165Ho (100% abundant) on the 88-inch Cyclotron at Berkeley with 37-Mev protons for about 2 hours at a current of 30 μA or greater, producing the reaction Ho(p,3n)163Er.

The sample, which consisted of four disks, 0.230 in. diameter and 0.05 in. thick, was placed in a Ta oven and heated by electron bombardment until a satisfactory beam was obtained. The beam lasted about 4 hours. Sometimes the holmium melted and evaporated out of the oven; other times the erbium simply diffused out, and the holmium target after the run looked as if nothing had happened to it. Anywhere from 0.5 to 2 hours was occupied trying to obtain a satisfactory beam.
Frequently the initial radioactive beam from the oven was not thrown out well by the inhomogeneous fields. This indicated that erbium did not emerge as single atoms at first. The apparatus employed the conventional two inhomogeneous magnetic fields as a spin polarizer and analyzer. In between these, a third homogeneous field and a superimposed small oscillating magnetic field induce desired transitions between energy levels of the atom. The orientational arrangement of the polarizer and analyzer was of the flop-in type, in which a resonance is indicated by an enhancement of the signal at the detector. More detailed descriptions of the apparatus and of the experimental techniques are found in Ref. 5. The beam was collected on freshly flamed Pt foils, removed from the vacuum system, and counted in a methane-filled β counter. Counter background and machine background (for a 5-min resonance exposure with the rf off) were both 1 to 2 counts per minute. Resonance signals (5-min exposure) were from 10 to 30 cpm for a direct beam (stop wire out of the way, 1 min exposure) of about 100 cpm. Erbium has a 3H_6 ground state arising from a $4f^{12} 6s^2$ configuration. With a spin of $5/2$, there are 78 Zeeman sublevels in the beam, giving rise to six Zeeman flop-in resonances (see Fig. 1).

SPIN SEARCH

Radiofrequencies corresponding to spins from $I = 1/2$ to $I = 11/2$ in a magnetic field of 4 gauss were tried. The frequencies involved are given by the relation

$$\nu = \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)} \frac{g_J \mu_B}{\hbar} H_{\text{ext}}$$
The results of this spin search are shown in Fig. 2. To eliminate any possible ambiguities the spin search was repeated at 6 gauss. All data indicates the spin of 163Er is $I = 5/2$. As a further check, we looked at all six of the possible $\Delta F = 0$ transitions at 10 gauss. Five of the six transitions yielded large resonances (> 25% of the direct beam) while the sixth ($F = 7/2$, the lowest F value) was much smaller.

COMPARISON WITH THEORY

Since 163Er is far removed from a closed shell, it is in a strongly deformed region, where the collective model of Nilsson applies. The measured spin $I = 5/2$ for the ground state of 163Er agrees with the Nilsson model for the 95th neutron in a level characterized by the asymptotic orbital of $5/2^-$ [523].

ACKNOWLEDGMENTS

We thank Professor Richard Marrus for many helpful discussions during the course of this work.

REFERENCES

* This work was supported by the U.S. Atomic Energy Commission.

† Present address: Department of Physics, Brandeis University, Waltham Massachusetts.

FIGURE LEGENDS

Fig. 1. Hyperfine structure diagram (partially schematic) for 163Er.

Fig. 2. 163Er spin search at 4 gauss. The error bars indicate 1 standard deviation.
Fig. 1
Fig. 2
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.