Use of TEM Characterization of Reactions of MnO$_2$ with Cr(III) and Al(III)

M. Fendorf, S.E. Fendorf, D.L. Sparks, and R. Gronsky

June 1991

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Use of TEM Characterization of Reactions of MnO₂ with Cr(III) and Al(III)

M. Fendorf, S.E. Fendorf*, D.L. Sparks*, and R. Gronsky

EMSA, San Jose, August, 1991

Materials Science Division
National Center for Electron Microscopy
Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

*University of Delaware
Department of Plant & Soil Science
Newark, DE 19717

This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and a University of Houston subcontract under DARPA, grant No. MDA972-88-J-1002.
USE OF TEM FOR CHARACTERIZATION
OF REACTIONS OF MnO₂ WITH Cr(III) AND Al(III)

M. Fendorf, S.E. Fendorf†, D.L. Sparks†, and R. Gronsky

Materials Science Division, Lawrence Berkeley Laboratory, and Department of Materials Science and Mineral Engineering, University of California, Berkeley CA 94720

†Department of Plant and Soil Science, University of Delaware, Newark, DE 19717-1303

Metal sorption is an important aspect of surface environmental processes which dramatically affects environmental quality. Sorption phenomena are active in transport and oxidation/reduction reactions, bio-transformation, and in determining the ultimate fate of metals in surficial systems. Although oxide materials often only constitute a small fraction of the solid composition in surficial environments, their high surface area, reactivity, and coating abilities make them extremely influential in sorption. Surface precipitation provides a model for the sorption of hydroxide metal ions at the solution/solid interface, and was successfully used to explain observed trends in the reaction of various metal ions on oxide surfaces (for example, the sorption of of Co(II) on MnO₂, TiO₂ and Al₂O₃).

In this study, transmission electron microscopy (TEM) is used to investigate the hypothesis that surface precipitation explains the limitation in Cr(III) oxidation by δ-MnO₂ at higher pH and Cr(III) concentrations. It is further expected that Al(III) also forms a surface precipitate, thus explaining its inhibition of Cr(III) oxidation. Specimens were prepared for TEM examination by crushing δ-MnO₂ to fine a powder and dispersing the resulting particles on a holey carbon film supported by a copper mesh grid. Reactions with 1mM Cr(III) at pH 4, 400μM Cr(III) at pH 5, and 400μM Al(III) at pH 5 were then carried out at 20°C and 1 atm pressure. All metal solutions were made from their nitrate salts, Cr(NO₃)₃ and Al(NO₃)₃ respectively.

High-resolution TEM images show that the unreacted MnO₂ is partially crystalline. Interspersed with amorphous material, there are layers of parallel atomic planes exhibiting severe bends and twists, as can be seen in Figure 1. This is similar to structures found to be characteristic of “glassy” (partially graphitized) carbon. Conventional selected area electron diffraction yields patterns (as shown in Figure 2) with well defined but rather broad rings having prominent 2.4Å and 1.4Å spacings (in agreement with x-ray diffraction data), and a spacing of roughly 6.5 Å can also be discerned. In contrast, TEM images of MnO₂ reacted with Cr(III) show that a marked change in crystal structure occurs in this case (see Figure 3). Electron diffraction confirms this, producing patterns containing sharp, well defined rings throughout (Figure 4). The dramatic change in crystal structure is a result of the oxidation of Cr(III) by δ-MnO₂. Images of MnO₂ reacted with Al(III) (Figure 5) are similar to those of the unreacted material. However, upon close inspection these images suggest that an increased amorphous layer is present at the surface, evidence that a precipitation reaction has occurred. The MnO₂+Al(III) diffraction pattern is indistinguishable from that of the unreacted MnO₂. This reaction product is thought to be an aluminum hydroxide, Al(OH)ₓ, since hydroxide reaction products have been identified in other, similar precipitation studies. In one case, the MnO₂+Cr(III) reaction formed a single-crystal particle on the supporting film in such a way that an apparent 6-fold axis was normal to the film (Figure 6).

In summary, the formation of a surface metal precipitate prior to bulk solution precipitation has important implications for environmental quality, since the precipitate will mask the properties of the original sorbent and only the surface properties of the metal hydroxide will be exhibited by the resulting conglomerated colloid. We have found that high resolution TEM has proven very useful in the characterization of the type of oxidation reactions described here, as it allows direct viewing of the surface structure after a reaction has been carried out. This technique indicates that surface precipitation does indeed occur during the reaction of δ-MnO₂ with Al(III). Work is now underway to identify the phase which results from the Cr(III)/MnO₂ reaction.

References
6 This study was carried out using facilities at Lawrence Berkeley Laboratory funded by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. MF and RG gratefully acknowledge support by a University of Houston subcontract under DARPA Grant No. MDA972-88-J-1002.
FIG. 1. -- High resolution TEM image of unreacted MnO₂.
FIG. 2. -- Diffraction pattern from unreacted MnO₂.
FIG. 3. -- High resolution TEM image of MnO₂ reacted with Cr(III).
FIG. 4. -- Diffraction pattern from MnO₂ reacted with Cr(III).
FIG. 5. -- High resolution TEM image of MnO₂ reacted with Al(III).
FIG. 6. -- Selected area diffraction pattern from single crystal MnO₂/Cr(III) reaction product.