Title
PRESSURE EMERGENCE OF MAGNETIC-ORDERING IN UBE13

Permalink
https://escholarship.org/uc/item/61m3k5s2

Authors
MAO, SY
JACCARD, D
SIERRO, J
et al.

Publication Date
1988-12-01

DOI
10.1016/0304-8853(88)90380-0

License
CC BY 4.0

Peer reviewed
PRESSURE EMERGENCE OF MAGNETIC ORDERING IN UBe$_{13}$

S.Y. MAO a, D. JACCARD a, J. SIERRO a, Z. FISK b and J.L. SMITH b

a DPMC, Section de Physique, CH-1211 Genève 4, Switzerland
b Los Alamos Laboratory, Los Alamos, NM 87545, USA

The electrical resistivity and the thermopower of UBe$_{13}$ have been measured between 1.2 and 300 K at pressures up to 67 kbar and in magnetic fields up to 6 T. While the resistivity reflects the partial delocalization of the f resonance, the marked oscillation of the low temperature thermopower strongly suggests that pressure drives a magnetic order well above T_c.

1. Introduction

Usually the transport properties of heavy fermion compounds (HFC) are described by independent Kondo-like scattering at high temperature ($T \gg T_K$) and in terms of a coherence effect at low temperature ($T \leq T_K$). In UBe$_{13}$, unlike other heavy electron superconductors, coherence scattering is still not developed when superconductivity arises at $T_c \sim 0.9$ K.

Indeed the resistivity ρ is still very large just above T_c, and the thermopower Q has not even reached its negative peaks [1]. To observe the low T excitations of the normal phase, high pressure transport experiments under magnetic field were performed. Pressure was generated by a pair of opposed Bridgman anvils made of non-magnetic tungsten carbide.

2. Resistivity

Low temperature results of resistivity ρ are presented in fig. 1. The pressure delocalization of the f resonance induces the strong depression of ρ and the increase of the temperature T_{max}^ρ of its maximum value, in good agreement with refs. [2] and [3]. A resistivity behavior rather similar to UPt$_3$, i.e. without resistivity maximum, is expected at about 200 kbar.

At low pressure, the large and negative magnetoresistance $\Delta \rho/\rho$ is characteristic for the presence of local magnetic moments. At intermediate pressure ($P = 45$ kbar) $\Delta \rho/\rho$ is still negative but weaker and at high pressure ($P = 67$ kbar) $\Delta \rho/\rho$ is slightly positive below 4 K. Such a positive magnetoresistance has been observed in moderate HFC like UPt$_3$, CeRu$_2$Si$_2$ or CeAl$_3$ under pressure [4].

At 67 kbar, preliminary data do not show any superconducting transition down to 0.1 K and above 1.2 K, the T^2 law of ρ is still not recovered.

At $P = 0$, for a sample from the same batch, a residual resistivity $\rho_0 \sim 12$ $\mu\Omega$cm has been measured at $B = 12$ T [5]. Our results then suggest a maximum of ρ_0 near 45 kbar.

3. Thermopower

As often observed in HFC, the thermopower Q of UBe$_{13}$ is positive at high temperature and takes large negative values at low temperature. Fig. 2 shows that the negative peak of Q, centered at T_{min}^Q, emerges above T_c under pressure. The clear correlation of T_{min}^Q with T_{max}^Q asserts the same physical origin. The pressure independence of the magnitude of $Q(T_{\text{min}}^Q)$ agrees with a P increase of the width of the f resonance.

0304-8853/88/$03.50 \text{© Elsevier Science Publishers B.V.}
The most interesting feature in fig. 2 is the low T positive contribution of Q which is clearly resolved at 67 kbar. We claim that such a peak is the signature of an antiferromagnetic order. If a magnetic gap opens only in parts of the Fermi surface, it may be possible that no corresponding anomaly occurs in the resistivity. Large positive peaks of Q have been observed for well characterized antiferromagnets like UCu$_5$ [6], TmSe or TmS [7]. In these cases the change of sign of Q corresponds to the ordering temperature T_N. The recently discovered antiferromagnet UPt$_3$ ($T_N \sim 5$ K) with a very low ordered moment also shows a positive peak of Q at ~ 8 K and a change of sign at ~ 24 K [8]. This thermoelectric behavior is expected for UBe$_{13}$ at roughly 200 kbar, i.e. the same pressure estimated from the resistivity.

From our previous study at $P = 0$ [1], a positive peak of Q can be extrapolated at $T \sim 150$ mK. A specific heat anomaly was recently discovered at the same temperature [5]. So it appears that the magnetic ordering sets in above T_c under pressure.

The highly magnetic field dependence of the low T thermopower is another evidence of its magnetic origin (fig. 2). As P increases, increasing fields are needed to destroy the positive contribution.

4. Conclusion

As pressure certainly induces the decrease of the low temperature electronic specific heat coefficient per unit volume γ_e, our results illustrate the correlation which has been found at zero pressure between γ_e and the ground state configuration of uranium based HFC [9]. It is not so surprising that at high pressure UBe$_{13}$ behaves rather like the antiferromagnetically ordered HFC UCu$_5$ or UPt$_3$.

References