Lawrence Berkeley National Laboratory

Recent Work

Title
DENSIFICATION AND GRAIN GROWTH IN DOPED LITHIUM FERRITE SPINEL

Permalink
https://escholarship.org/uc/item/61m650b2

Authors
Bandyopadhyay, G.
Lacy, A.M.
Fulrath, R.M.

Publication Date
1973-09-01
DENSIFICATION AND GRAIN GROWTH IN DOPED LITHIUM FERRITE SPINEL

G. Bandyopadhyay, A. M. Lacy, and R. M. Fulrath

September 1973

Prepared for the U. S. Atomic Energy Commission under Contract 7405-ENG-48

For Reference

Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
DENSIFICATION AND GRAIN GROWTH IN DOPED LITHIUM FERRITE SPINEL

G. Bandyopadhyay, A. M. Lacy* and R. M. Fulrath

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and Department of Materials Science and Engineering, College of Engineering; University of California, Berkeley, California 94720

In processing of ceramic materials, it is very often desirable to add small amounts of selected additions to control the sintering, microstructure developed, and the physical and chemical properties. In the case of lithium ferrite, selective additives play a crucial role in developing a useful magnetic square loop material.1-5 The purpose of this note is to report the influence of some common additives like NiO, MgO, TiO\textsubscript{2} and SiO\textsubscript{2} on the densification and grain growth behavior of lithium ferrite with respect to the sintering time, temperature and atmosphere. The sintering runs were done using a packing powder method6 where the specimens were buried deep into a packing powder composition to control the lithium loss. A high oxygen atmosphere was used to control the oxygen loss.

Lithium ferrite (LiFe\textsubscript{5}O\textsubscript{8}) powder was prepared from reagent grade Li\textsubscript{2}CO\textsubscript{3} and α-Fe\textsubscript{2}O\textsubscript{3}. The method of preparation is identical to that described in a previous paper.6 Suitable amounts of dopants (NiO, MgO, TiO\textsubscript{2} or SiO\textsubscript{2}) were added during the mixing of raw materials for better homogeneity after calcination. Three different packing powder compositions were used: (a) pure LiFe\textsubscript{5}O\textsubscript{8}, (b) LiFeO\textsubscript{2} + LiFe\textsubscript{5}O\textsubscript{8} (2:1 mole ratio), and (c) LiFe\textsubscript{5}O\textsubscript{8} + Fe\textsubscript{2}O\textsubscript{3} (2:1 mole ratio). One of these packing powders was used during the sintering runs to control the lithium loss.

*Now a student at Univ. of Calif. San Francisco.
Density was measured by geometric means and the grain size measurement was made from micrographs taken by scanning electron microscopy.

In Figure 1 log porosity vs log time is plotted for various sintering runs carried out in two different packing powder compositions and at two different temperatures (1000°C, and 1100°C). These data were presented previously, and there it was concluded that a significant difference in the cation vacancy concentration in the composition depending on the packing powder led to the large density difference at 1000°C. However, at higher temperatures (e.g. at 1100°C) a large part of these excess cation vacancies can be lost by the loss of oxygen through the reaction,

$$\text{Fe}^{3+} + 3/8\text{V}_c + 1/2\text{O}_2 \rightarrow \text{Fe}^{2+} + 1/4\text{O}_2(g)$$

and thus packing powder may not influence the density significantly unless the oxygen loss can be eliminated. Thus there is an insignificant density difference at 1100°C depending on the packing powder relative to that observed at 1000°C.

In Fig. 2 similar plots with NiO, MgO, TiO$_2$ and SiO$_2$ doped specimens (1 mol% in each case) have been drawn along with that of the undoped lithium ferrite composition. It is interesting to note that NiO, MgO and TiO$_2$ doping do not affect the intrinsic sintering behavior significantly, although a slight improvement in the densification can be achieved. The influence of the packing powder on these compositions at 1000°C is equally strong as it was for the undoped specimens. This
suggests that in NiO, MgO or TiO₂ doped compositions, the nonstoichiometry introduced by the atmospheric conditions has a far greater effect than the extrinsic defects introduced by the dopants. The case of SiO₂ doping is somewhat different from the others. Apparently it forms a liquid phase as has been confirmed by the microstructural studies. Thus the sintering process in the SiO₂ doped specimens becomes more dependent on the amount and nature of liquid rather than on the defect structure of the solid.

At 1100°C the densification behavior in all the specimens is more independent of the packing powder similar to that noted for the undoped specimens (Fig. 1). The densification data at 1100°C with a lithia rich packing powder have been omitted intentionally from Fig. 2 in order to keep the figure simple. At 1100°C SiO₂ doping again exhibited a maximum enhanced densification.

In Fig. 3 log grain size vs log time has been plotted for specimens of various compositions and sintered in 1 atm O₂ with various packing powder compositions. It is noted that at 1000°C, all the data points for undoped, NiO, MgO, TiO₂ or SiO₂ doped specimens sintered in lithia rich or Fe₂O₃ rich packing powder at 1 atm oxygen, can be represented by a single straight line with a slope of 1/3. Despite significant density difference, these specimens showed an identical grain growth behavior. Furthermore, the density was always less than 90% (Fig. 2) which indicates the presence of an open pore structure in these specimens. Thus it is most reasonable to assume that the grain growth mechanism operative in these specimens is the same as was suggested by Greskovitch and Lay in their experiments with high porosity Al₂O₃ compacts. They suggest
neck growth between particles and the migration of the boundary followed by possible spheroidization of the remaining single particle. However, at 1100°C, deviation from a single straight line occurs with NiO, MgO, or TiO₂ doped specimens sintered in a high lithia packing powder and in 1 atm O₂ (Fig. 3). It should be noted that the above compositions (NiO, MgO, or TiO₂, doped LiFe₅O₈) sintered in Fe₂O₃ rich packing powder and 1 atm O₂, and undoped specimens sintered in either packing powder and 1 atm O₂, still follow the same single straight line without any apparent change in slope. SiO₂ doping led to rapid discontinuous grain growth in both packing powder compositions producing a microstructure with pores entrapped within the grains.

An enhanced grain growth rate with NiO, MgO or TiO₂ dopants in lithia rich atmosphere may be due to the change in the grain growth mechanism as a result of the change in the defect structure of the system. NiO or MgO in solution with lithium ferrite should create oxygen vacancies, whereas TiO₂ should form excess cation vacancies. Anion deficiency in ferrites favors discontinuous grain growth⁶,⁷ and thus enhanced grain growth with NiO or MgO doping is not unexpected. On the other hand, a cation deficiency should lead to a small grain microstructure with pores exclusively in the grain corners.⁶,⁷ But contrary to that, TiO₂ doping enhances the grain growth even more than does NiO. Thus it is evident that further analysis is necessary to understand the grain growth behavior in the doped lithium ferrite system in relation to the sintering atmosphere.
ACKNOWLEDGMENT

This work was done under the auspices of the United States Atomic Energy Commission.
REFERENCES

FIGURE CAPTIONS

Fig. 1. Porosity-time relationship for some isothermal sintering runs of stoichiometric specimens in two different packing powder atmospheres and at 1 atm oxygen.

Fig. 2. Porosity-time relationship for doped lithium ferrite compositions sintered isothermally in packing powder and at 1 atm O_2.

Fig. 3. Grain size-time relationship for pure and doped lithium ferrite compositions sintered isothermally in packing powder and at 1 atm O_2.
Fig. 1
Fig. 2

- Undoped NiO, MgO, or TiO$_2$ doped
- SiO$_2$ doped
- Undoped or MgO doped NiO or TiO$_2$ doped
- SiO$_2$ doped

Fe$_2$O$_3$ rich packing powder
(LiFe$_5$O$_8$:Fe$_2$O$_3$ = 2:1)

Lithia rich packing powder
(LiFeO$_2$:LiFe$_5$O$_8$ = 2:1)
Fig. 3

- LITHIA RICH PACKING POWDER
- 1 ATM. O₂

- 1 MOLE % TiO₂
- 1 MOLE % NiO
- 1 MOLE % MgO

SINTERING TIME, HOURS

GRAIN SIZE, MICRONS

XBL 739-1842

1100°C

1000°C
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.