Title
Advances and Applications of ABCI

Permalink
https://escholarship.org/uc/item/62s9f2rk

Author
Chin, Y.H.

Publication Date
2011-01-12
Accelerator & Fusion Research Division

Advances and Applications of ABCI

Y.H. Chin

May 1993

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.
Advances and Applications of ABCI*

Y. H. Chin

Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Presented at the 1993 Particle Accelerator Conference
Washington, D.C., May 17-20, 1993

* This work was supported by the Director, Office of Energy Research, Office of High Energy Nuclear Physics, High Energy Physics Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Advances and Applications of ABCI*

Y. H. Chin
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Abstract

ABCI (Azimuthal Beam Cavity Interaction) is a computer program which solves the Maxwell equations directly in the time domain when a Gaussian beam goes through an axi-symmetrical structure on or off axis. Many new features have been implemented in the new version of ABCI (presently version 6.6), including the “moving mesh” and Napoly’s method of calculation of wake potentials. The mesh is now generated only for the part of the structure inside a window, and moves together with the window frame. This moving mesh option reduces the number of mesh points considerably, and very fine meshes can be used. Napoly's integration method makes it possible to compute wake potentials in a structure such as a collimator, where parts of the cavity material are at smaller radii than that of the beam pipes, in such a way that the contribution from the beam pipes vanishes. For the monopole wake potential, ABCI can be applied even to structures with unequal beam pipe radii. Furthermore, the radial mesh size can be varied over the structure, permitting to use a fine mesh only where actually needed. With these improvements, the program allows computation of wake fields for structures far too complicated for older codes. Plot of a cavity shape and wake potentials can be obtained in the form of a Top Drawer file. The program can also calculate and plot the impedance of a structure and/or the distribution of the deposited energy as a function of the frequency from Fourier transforms of wake potentials. Its usefulness is illustrated by showing some numerical examples.

I. INTRODUCTION

The first version (version 2.0) of ABCI [1] was written in 1984, however, its manual was published only in 1988. It used the FIT method [2] to discretize the Maxwell equations, similar to TBCI [3]. However, in addition to some internal differences, it was preferable to TBCI mainly due to capability to change dimensions of arrays to make a larger mesh if necessary and the possibility of different mesh sizes in r- and z-directions. Furthermore, one could input the mesh sizes rather than the number of mesh lines, and could use CONTINUE cards to calculate with different bunch lengths and/or mode numbers (m=0 or 1) in a single job. In this program, the beam was assumed to be hollow, with surface charges azimuthally distributed either in an uniform or sinusoidal way. In the first version of ABCI, the radius of the hollow beam was always chosen to be equal to that of a beam pipe so that no fields were brought with it into the structure of concern. The wake fields were integrated at the radius of the beam pipe, which left the integration across the cavity gap as the only contribution to the wake potentials and thus made long beam pipes unnecessary. The program was compact, and simply structured so that users could easily change important parameters such as an array size for the number of mesh points, and modify the program for their special needs. Since the main body of the program was small, relatively large arrays could be allocated to mesh points in a limited memory space. Furthermore, permitting unequal mesh sizes in the axial and radial directions helped to reduce the number of mesh points.

However, if one tried to apply the program to long structures and/or very short bunches, the total number of mesh points easily becomes of the order of many hundred thousands or more. For example, the recently proposed "stagger-tuned" structure for the NLC of SLAC [4] consists of a disc-loaded waveguide with a large number of cells with slightly different dimensions of the order of μm or less. In order to correctly represent such tiny differences, many million mesh points would be needed.

Not all of these mesh points are simultaneously necessary at each time step for the calculation of fields. If we are only interested in the wake potentials not too far behind the beam, the fields need to be calculated only in the area called, "window". The window is defined by the area of the structure which starts at the head of the bunch and ends at the last longitudinal coordinate in the bunch frame (which is often the tail of the bunch) up to which we want to know the wake potentials. The fields in front of the bunch are always zero. The fields behind the window can never catch up with the window, which is moving forward with the speed of light, and thus do not affect the fields inside the window. Since the calculation is confined to the area inside the window, the “mesh” is needed only for this frame and moves together with it. One of main new features of ABCI is the implementation of this “moving mesh” in lieu of the conventional static mesh. Since the window is usually much smaller than the total structure, the number of mesh points can be drastically reduced. In addition, since the window length is determined only by the last longitudinal coordinate of the wake potentials, the number of mesh points does not change as the structure length increases.

Another main new feature of ABCI is the implementation of “Napoly’s integration method” of fields

* This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
to calculate wake potentials [5,6]. The conventional integration method at the radius of the beam pipe breaks down when a part of the structure comes down below it, or when the radii of the two beam pipes at both ends are unequal. The only alternative was to integrate over a straight line at an allowable radius and with beam pipes long enough to allow the fields to catch up with the beam far behind the structure. Napoly’s integration method is a solution to this classical problem (the integration along the structure surface was already described by Gluckstern and Neri [7] in 1985). It relies on the expression of the wake potentials, at any multiple order, as an integral of electromagnetic fields along any one dimensional contour spanning the structure longitudinally. For the particular case of the contours parallel to the r- and z-axes, the integration is considerably simplified [6]. For this reason, ABCI has an option which uses a path of integration (“Napoly-Zotter contour”) that starts as usual along the beam pipe, then descends radially to pass underneath the smallest material structure radius. It then rises again to the radius of the outgoing beam pipe and moves along it to the end of the structure (Napoly’s method and a proper integration contour are actually automatically chosen as soon as a material point has a radius smaller than the beam pipe). This path is shown in Fig. 1 by the broken curve.

Fig. 1. Napoly-Zotter integration contour for computation of wake potentials.

The first axial coordinate where the path descends, the radius to which it goes, and the second axial coordinate where it rises again can also be chosen as input commands. In particular for structures with a complicated boundary extending to the inside of the beam pipes, this technique leads to a considerable saving in computing time. For the monopole (longitudinal) wake potential case, this method permits a structure with unequal beam radii at both ends. For the dipole (transverse and longitudinal) wake potential case, the beam pipe radii must be equal.

In addition to these two new main features mentioned above, ABCI has a completely new mesh generator, which permits circular and elliptical inputs just as TBCI. The program allows variable radial mesh sizes for different radial intervals for the better fitting of mesh and reducing the total number of mesh points by permitting to use a fine mesh only where actually needed. In addition to the conventional method of inputting the shape of the structure by giving the absolute coordinates of points, users can now

input the structure by giving the increments of coordinates from the previous positions (incremental input). In this method, one can use repetition commands to repeat input blocks which saves time and labor when the same structure repeats many times. Any bunch shape supplied by an user can be used (default=Gaussian). The new ABCI also has better plotting facilities. It can show on a separate page each the input and actual shape of a cavity used for calculation, electric field lines (or total current lines) at subsequent time steps for the monopole case, the wake potentials, and finally the impedance of a structure from Fourier transforms of wake potentials. ABCI creates a “Top Drawer” file [8] for the corresponding figures. By this method, ABCI’s graphical output becomes independent of computers and graphic devices. One can easily import/export the graphical output to other computers, and/or edit it if desired.

II. APPLICATIONS

In this section, we show two typical examples of structures which demonstrate the usefulness of the new version of ABCI.

A. Collimator

A Saclay collimator shown in Fig. 2 is a simple constriction of a beam pipe, which can be computed easily with the new version of ABCI using Napoly’s method. The beam pipes at both sides have 5 cm length. The integration contour used is shown by the broken curve. The rms bunch length is chosen to be 0.5mm. The longitudinal loss factor was then found to be 1.755×10^{13} V/C. For comparison, longitudinal loss factors were also computed by the integration along a straight line at the inner radius of the collimator and subtracting the contribution of the beam pipe from it (similar to the “WAKCOR” option in TBCI). The results are shown by the solid curve in Fig. 3 as a function of the beam pipe length L at both sides. The dotted line denotes the loss factor obtained by Napoly’s method. They agree when a quite long beam pipe ≥ 30cm compared to the beam pipe radius of 1 cm is used for the WAKCOR method. However, Napoly’s method provides results much easier and faster.

Fig. 2. Saclay collimator.
B. CLIC stagger-tuned disk-loaded waveguide

A "stagger-tuned" structure of the CLIC (CERN Linear Collider) [9] is a disc-loaded waveguide composed of many cells with slightly different dimensions in such a way that the mode frequencies of each cell are distributed around the average values. Then, wake fields from each cell are expected to cancel each other so that the total wake fields will damp away rather quickly. Figure 4 shows an example of the CLIC stagger-tuned structure with 20 cells. The computed (normalized) transverse wake potential is plotted in Fig. 5 up to 1cm behind the head of the bunch (the bunch length in this case is only 0.17 mm). A clear damping of the transverse wake potential can be seen.

If TBCI is used instead in this example, it would have required about 4.6 million mesh points of uniform mesh size for required mesh sizes of 10 µm and for almost 7.2cm long structure of over 6.4mm radius. That would probably not fit any computer. With the moving, variable and unequal meshes, ABCI requires only 84 thousands mesh points, by factor ~ 60 less than TBCI does.

III. CONCLUSIONS

The implementation of the moving mesh and Napoly's method for computing wake potentials, together with the option of variable radial mesh sizes, permits a large saving in memory and computing time, and thus drastically enhances the computational power of ABCI. It is now possible to compute wake potentials in much more complicated structures than before. The numerical examples shown in this paper demonstrate the usefulness and the remarkable advances in the new version of ABCI.

The author would like to thank B. Zotter and O. Napoly for helpful discussions and Center for Beam Physics at LBL for general support and encouragement.

IV. REFERENCES