Title
PURIFICATION OF L-ISOLEUCYL t-RNA SYNTHETASE BY AFFINITY CHROMATOGRAPHY

Permalink
https://escholarship.org/uc/item/63q0s2nz

Authors
Rainey, Petrie
Bennett, Edward L.
Calvin, Melvin.

Publication Date
1974-04-01
PURIFICATION OF L-ISOLEUCYL t-RNA SYNTHETASE
BY AFFINITY CHROMATOGRAPHY

Petrie Rainey, Edward L. Bennett and Melvin Calvin

April 1, 1974

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PURIFICATION OF L-ISOLEUCYL t-RNA SYNTHETASE BY AFFINITY CHROMATOGRAPHY

Petrie Rainey, Edward L. Bennett, and Melvin Calvin

Laboratory of Chemical Biodynamics, Lawrence Berkeley Laboratory, and the Department of Chemistry, University of California, Berkeley, California 94720

Received

SUMMARY

L-Isoleucyl t-RNA synthetase was purified to 97% purity in a single step by affinity chromatography on a column carrying L-isoleucinyl 5'-adenylate as the insolubilized ligand.

INTRODUCTION

The purification of aminoacyl t-RNA synthetases by conventional methods is often long and tedious and results in low yields of the purified enzyme. The great specificity these enzymes show for their respective substrates made them seem ideal candidates for purification by the technique of affinity chromatography.

Initially we chose to investigate the purification of L-isoleucyl t-RNA synthetase from E. coli B, a well characterized enzyme first purified to homogeneity by Baldwin and Berg. As the insolubilized ligand, we chose to employ analogs of L-isoleucine and L-isoleucyl adenylate rather than tRNA_{ile}, since the latter is difficult to obtain in homogeneous form and is subject to degradation during use.

Affinity columns bearing L-isoleucine esters or amides afforded little or no purification. Apparently, these ligands bound the enzyme too weakly. We therefore turned to the powerful inhibitor, L-isoleucinyl 5'-adenylate (K_i = 7x10^{-9} M). Inhibition studies with model compounds indicated that of the possible methods of attachment to agarose, linkage via a spacer on the 6-amino group of the adenine would least impair the compound's ability to bind the synthetase. Using columns with this inhibitor so attached, we have obtained 97% pure L-isoleucyl t-RNA synthetase without any additional procedures for protein fractionation.
MATERIALS AND METHODS

Preparation of the Adsorbent. Succinyl diaminodipropylamino agarose was prepared by activating Biogel A-15, 100-200 mesh (BioRad Laboratories) with cyanogen bromide, coupling to 3,3'-iminobispropylamine, and succinyllating the resulting material with succinic anhydride, following the procedures of Cuatrecasas and Parikh. The resulting beads carried about 12 μmoles of side chain per ml of gel, as determined by ninhydrin assay of hydrolysates. Labeled N-t-BOC-L-1,5-6-[32P]-pyrophosphate exchange activity was recovered in the effluent, while more than 95% of the total protein passed through unretarded. The percent of activity in the effluent was roughly constant for a given batch of extract and was independent of the ratio of the amount of extract to the amount of adsorbent. Presumably, this activity represents modified or partially denatured synthetase which does not bind strongly to the ligand or it represents some other enzyme capable of catalyzing the exchange. It does not
appear to be a saturation effect.

The retained activity could be recovered in varying yield by the usual techniques for desorption—pH shift, increased ionic strength, or elution with a soluble competitive ligand. However, the enzyme recovered by simple application of any of these techniques was invariably contaminated by several other proteins.

The following procedure was developed to circumvent this difficulty: Two columns were prepared. The affinity column contained the adsorbent diluted with two or more parts of unmodified agarose beads. Sufficient affinity adsorbent was used to provide at least fifty binding sites per molecule of enzyme to be applied. A precolumn contained a volume of succinyldiaminodipropylamino agarose equal to two-thirds the volume of the affinity column. These columns were linked in tandem with the non-specific one first. The crude *E. coli* extract was passed onto the columns at such a rate as to give 30 minutes of contact time with the affinity column. The columns were then washed with 0.02 M potassium phosphate containing 0.02 M 2-mercaptoethanol until the OD$_{280}$ of the effluent ceased to decrease. The precolumn was then detached and washing of the affinity column only was continued. The pH of the irrigant buffer was raised to 9.2 via a gradient over 3-4 column volumes. Washing then proceeded at pH 9.2 until the OD$_{280}$ of the effluent again ceased to decrease. Incomplete washing at this stage will result in less pure preparations. The pH of the irrigant buffer was returned to 7.5 and elution proceeded until the effluent returned to pH 7.5. The irrigant was then replaced by one which contained as well 0.02 M L-isoleucine. The flow rate was reduced to give a contact time of 1 hour or more. Twenty or more column volumes of effluent were collected.

A typical elution pattern is shown in Figure 2. In this instance, 22% of the applied synthetase activity passed through the column unretarded and 57% of the activity was recovered in purified form. The normal recovery of purified enzyme is 50-60%.
The purified enzyme is obtained in rather dilute form. This is the result of the low partition ratio of the synthetase between the L-isoleucine in solution and the more powerful insolubilized ligand. Reduction of the effective concentration of the gel-bound inhibitor by dilution of the adsorbent with unmodified agarose ameliorates this situation somewhat and has the added advantages of reducing non-specific adsorption of protein and improving flow properties. The use of more potent soluble ligands, such as free L-isoleuciny1 5'-adenylate, or L-isoleucyl adenylate generated in situ from L-isoleucine and ATP, is precluded, because their use results in elution of undesired (apparently AMP-specific) proteins from the column.

The fractions containing the purified synthetase have been pooled and concentrated by ultrafiltration with little or no loss of activity. After concentration, the elution buffer may be replaced by diafiltration with 20 mM potassium phosphate (pH 7.5) containing 2 mM dithiothreitol if this is desired.

The concentrated L-isoleucyl t-RNA synthetase preparations have had specific activities of 650-800 units per milligram of protein. The specific activity reported for enzyme purified by classical techniques is 650 units/mg protein.\(^1\),\(^9\) However, SDS-acrylamide gel electrophoresis indicated the presence of another protein in our preparations (see Fig. 3). Quantitative densitometry revealed the latter to have an integrated absorbance of ca. 3% of that of the L-isoleucyl t-RNA synthetase. This ratio remained essentially constant when individual fractions were compared.

We have reused the adsorbent many times over a period of six months without any apparent loss in ability to retain the synthetase. During this period there was a very slow loss of insolubilized ligand which could be minimized by cold (3°C) storage of the gel at pH 6. Before reuse, both the precolumn and the affinity column were thoroughly washed with at least ten volumes each of 0.2 M potassium phosphate (pH 9.5), 4 M urea, and 0.2 M potassium dihydrogen
phosphate to remove any proteins which remained bound to the gels.

Others have reported affinity purifications of certain aminoacyl tRNA synthetases using either the cognate tRNA2,10,11 or the amino acid amide as the insolubilized ligand.12 Our procedure has the advantages that it does not require a partially purified enzyme preparation as the starting material, that a small amount of adsorbent can process a large volume of crude extract, and that the adsorbent can be reused many times.

In principle, the L-isoleucinyl 5′-adenylate agarose should be capable of purifying L-isoleucyl t-RNA synthetase from any source. Purification of other aminoacyl tRNA synthetases should be possible using appropriate analogous adsorbents. We are currently investigating these possibilities.

ACKNOWLEDGMENT

This work was supported by the U. S. Atomic Energy Commission.

REFERENCES

Fig. 1. Synthesis of \(\text{N-t-BOC-L-isoleucinol N}^6-(2\text{-aminoethyl})-5'\text{-adenylate} \).

Fig. 2. Affinity chromatography of L-isoleucyl t-RNA synthetase. The chromatography was carried out on columns of succinyl-diaminodipropylamine (1.27 cm x 7 cm) and of one part L-isoleucinol 5'-adenylyl agarose mixed with two parts of unmodified agarose (1.27 cm x 9 cm) following the procedure outlined in the text: A. Crude \text{E. coli} extract (12.3 units/ml of synthetase; 6.62 mg/ml of protein; 360 ml total volume) was passed through the tandem columns. B. The columns were washed with 0.02 M potassium phosphate (pH 7.5) containing 0.02 M 2-mercaptoethanol. C. The affinity column only was washed with a pH gradient from 7.5 to 9.2. D. Washing was continued at pH 9.2. E. The pH of the irrigant was returned to 7.5. F. Irrigant was switched to 0.02 M potassium phosphate (pH 7.5) containing 0.02 M L-isoleucine and 0.02 M 2-mercaptoethanol. Flow rate was 23.2 ml/hr for fractions 1-37 and 10.7 ml/hr for fractions 38-50. Fraction size was 23.2 ml for 1-37 and 21.4 ml for 38-50. Protein (•) and enzyme activity (○) were measured as described under Methods.

Fig. 3. SDS-acrylamide electrophoresis of purified L-isoleucyl tRNA synthetase. The main band has an apparent molecular weight of 106,000. The reported weight of the synthetase is 112,000. The arrow indicates the location of a faint second band.
Fig. 1.
Fig. 2.
Fig. 3.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.