Measurements on Subscale Y-Ba-Cu-O Racetrack Coils at 77 K and Self-Field

ABSTRACT—YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) tapes carry significant amount of current at fields beyond the limit of Nb-based conductors. This makes the YBCO tapes a possible conductor candidate for insert magnets to increase the bore field of Nb$_3$Sn high-field dipoles. As an initial step of the YBCO insert technology development, two subscale racetrack coils were wound using Kapton-insulated commercial YBCO tapes. Both coils had two layers; one had 3 turns in each layer and the other 10 turns. The coils were supported by G10 side rails and waxed strips and not impregnated. The critical current of the coils was measured at 77 K and self-field. A 2D model considering the magnetic-field dependence of the critical current was used to estimate the expected critical current. The measured results show that both coils reached 80%–95% of the expected values, indicating the feasibility of the design concept and fabrication process.

Index Terms—Insert magnets, racetrack coils, Y-Ba-Cu-O coated conductors.

I. INTRODUCTION

HIGHER magnetic fields are of critical interest for high-energy physics [1], [2] and numerous other scientific research areas [3]. In 2004, a peak bore field of 16 T was reached in a Nb$_3$Sn dipole magnet at 4.5 K [4]. The magnetic-field dependence of the critical current density (J_c) is becoming available. For example, a coil with six double pancakes fabricated at SuperPower Inc. (SPI) generated 7.8 T in a background field of 19 T, reaching a total field of 26.8 T at 4.2 K [7]. More recently, an YBCO insert coil, composed of 380 turns, insulated with varnish but without impregnation, generated 2.8 T in a background field of 31 T, setting another record of 33.8 T at 4.2 K [8], [9].

At Lawrence Berkeley National Laboratory (LBNL), high-field magnet inserts based on both Bi-2212 Rutherford cables [5], [10], [11] and YBCO tape conductors are under investigation through a subscale coil program similar to the one developed for Nb$_3$Sn [12]–[14]. In this article, we summarize the results of recent efforts on YBCO coil technology development at LBNL.

II. YBCO TAPE CONDUCTOR

The conductor (SCS4050) is manufactured by SPI [15]. The bare tape is 4.0 mm wide and 0.095 mm thick. The conductor has a 50 µm thick Hastelloy C-276 substrate. The tape is insulated by the vendor using 50 µm thick Kapton tapes with 30% overlap. The critical current (I_c) was measured every 5 m by the vendor. The minimum I_c of a 100 m long conductor is 154 A at 77 K and self-field. The I_c profile along 100 m has a standard deviation of 6.26%; the n-value is around 32.

Several 10 cm long samples, cut from the same spool as the conductors used to wind the coils, were used to characterize the conductor I_c at 77 K and self-field. The short sample I_c was consistent with those reported by the vendor. No reduction in I_c was found for bending diameters larger than 9 mm, when the samples were bent in the easy way with the YBCO on the out/inside [16].

III. COIL FABRICATION AND TEST

A. Coil Fabrication

Two double-layer racetrack coils, YC01 and YC02, were wound on stainless steel 304 pole-islands following the subscale coil concept [5], [10], [12]. The pole-islands are 190 mm long, 37 mm wide and 9 mm thick. Coil YC01 has 2 × 3 turns and coil YC02 has 2 × 10 turns. To test the first steps of the coil fabrication process, e.g., winding and soldering, no vacuum impregnation was performed. Both coils were constrained only by G10 side bars (2 mm thick) and were wrapped with waxed string in the straight section (Fig. 1). The end support structures, e.g., horseshoe and end shoe commonly used for subscale coils [12], were not implemented. This configuration allowed for iterative I_c measurements in different segments.

Typical tension used during the winding is 6 N, corresponding to a tensile stress of ~30 MPa in the Hastelloy substrate, well below its yield limit of 455 MPa 295 K [17]. Given the Hastelloy modulus of 195 GPa at room temperature [17], 30 MPa yields a tensile strain of 0.02%, which is below the critical applied axial strain in the specification [18] as well as other published results [19], [20]. In addition, the YBCO...
side of the conductor faces the pole-island during the winding so that the YBCO layer is under compression to cancel at least part of the hoop stress when the coil is energized. The conductor is continuously wound around the pole-island from one layer to the other to form the transition between layers (ramp). It took about 2.6 m to wind coil YC01 and 8.5 m for coil YC02.

At each voltage tap location, a pair of twisted Cu instrumentation wires (AWG 32 and Polymide insulation) is soldered (Sn96/Ag4 solder) to the conductor edge with a contact length \(\lesssim 1.5 \text{ mm} \). To minimize the possible conductor \(I_c \) degradation due to soldering, only two or three voltage taps are installed before the test. Additional voltage taps are installed during subsequent thermal cycles. No obvious \(I_c \) change is observed with the addition of more voltage taps.

B. Coil Measurement

The pole-island is bolted to a G10 board (Fig. 1). Two oxygen-free high-conductivity Cu sheets with a "L"-shaped cross section are bolted at one end of the board to serve as the current leads. The two lead conductors from the coil are soldered to the Cu sheets with a contact length of \(\sim 25 \text{ mm} \). The lead conductors are slightly bent to minimize strain due to thermal contraction during cooldown. The power cables are bolted to the Cu sheets for easy attachment. During the test, the coil assembly is submerged in liquid nitrogen at 77 K.

The coil measurement consists primarily of \(I_c \) measurements of different coil segments. To determine \(I_c \) using an electric-field criterion, the segment lengths are determined at room temperature by measuring their resistances. During excitation, the segment and shunt voltages are measured by digital multi-meters (DMMs, HP3458A and HP3457A). The DMMs are triggered to take measurements simultaneously. Typical sampling rate is 1 Hz, which is sufficient due to the slow quench process at 77 K and in low field. Note that this is three orders lower than the typical sampling rate of 5 kHz for capturing the quench propagation in Nb3Sn magnets used at LBNL [21]. A power supply (EMS, 7.5 V, 1 kA) is controlled to provide the desired current. All instruments are controlled by a PC via an IEEE-488 bus.

The current is ramped in a step-and-hold manner to minimize the inductive voltage. Several voltage measurements are averaged at the same current level. The hysteresis of the \(V(I) \) curve was checked by ramping the current down when the coil voltage was above \(\sim 10 \text{ mV} \). The curve retraced itself and no excessive heating was found. Coil YC02 has an inductance of 100 \(\mu \text{H} \), yielding only 2 J of stored energy at a transport current of 200 A. Thus, no specific quench protection scheme is used in the test.

IV. Field Dependence of Critical Current at 77 K

The \(I_c \) of an YBCO tape strongly depends on the magnetic field direction, and is especially sensitive to the component perpendicular to the tape surface at 77 K due to the anisotropy associated with the layered structure of YBCO. Hence, it is necessary to consider the magnetic-field dependence of the critical current when determining the expected coil \(I_c \). Here a 2D model based on the approach proposed by Babaei Brojeny and Clem [22] is used to estimate the self-field \(I_c \) of a racetrack coil with the same cross section as YC01/YC02 but with an infinitely long straight section (Fig. 2). The current density distribution \((J) \) in each turn of the coil that is self-consistent with the resulting field distribution is calculated using the 2D model.

Fig. 1. Coil YC02 as mounted on the coil holder before the test. Layer A was the top layer and layer B was facing the G10 board.

Fig. 2. Cross section of a racetrack coil with an infinitely-long straight section (not to scale). Layer A: coil pack 1 and 2; layer B: coil pack 3 and 4. Three turns are shown in coil pack 1. \(w \) is the pole-island width.

Define \(J_n(x, y) \) as the current density in each turn of the coil. The subscript \(n \) is the number of the coil pack (Fig. 2). Due to the symmetry, \(J_1(x, y) = -J_2(-x, y) = -J_3(-x, -y) = J_4(x, -y) \). Each turn is discretized in a 1D grid along the \(y \) direction because of the high aspect ratio of the conductor.

Only the \(B_z \) (perpendicular to the tape surface) dependence of the conductor \(I_c \) at 77 K is considered for simplicity. The Kim model [22] is used to describe the field dependence, i.e., \(I_c(B_z) = J_0/(1 + |B_z|/B_0) \), where \(J_0 = I_c/A \) and \(A \) is the area of the YBCO layer (0.004 mm\(^2\)). Fitting the Kim model to the \(I_c(B_z) \) measured by SPI [23] using a least-squares method yields \(J_0 = 0.05 \text{ MA/mm}^2 \) and \(B_0 = 115.04 \text{ mT} \). The range of \(B_z \) used for the fit was 0.1 T - 2.5 T. Given a typical short sample \(I_c \) of 180 A at 77 K self-field, we find good agreement between the calculated and measured short sample \(I_c(B_z) \) [23].

V. Results

A. Expected Coil \(I_c \)

The \(I_c \) of each turn is given by \(I = \int J(y) dy \), where \(J(y) \) is the current density distribution in each turn given by the 2D model. As shown in Fig. 3 insert, \(J(y) \) is not uniform in the conductor because of the field distribution; \(J_1|_{y=0.5 \text{ mm}} = J_0 \) indicates that \(B_z = 0 \) close to the mid-plane \((x\text{-axis}, \text{Fig. 2})\). This is mainly due to the field contributed from coil pack 4. Fig. 3 shows the \(I_c \) for each turn in coil pack 1, normalized...
to the short sample I_c (180 A) at 77 K and self-field, in 2×3-turn and 2×10-turn coils. The concave I_c-turn distribution is consistent with the stronger B_x in the middle turns. The symmetric distributions indicate a small effect from coil packs 2 and 3 for a pole-island width of 37 mm.

C. YC02 – The 2×10-Turn Coil

Similar to YC01, coil YC02 had three voltage taps in the initial tests and the ramp section was included in the layer B voltage tap pair. The whole coil voltage of YC02 consists primarily of layer B (Fig. 5): $I_{c,\text{coil}} = 107$ A, $n = 33$ and $I_{c,B} = 104$ A, $n = 31$ using $E_c = 10^{-4}$ V/m. $I_{c,A}$ is estimated to be at least 15 A higher than $I_{c,B}$.

Voltage taps were added in layer B such that layer B = 1 + 2 + (3, 4) + (5, 6, 7) + (8, 9, 10), expressed in terms of turn number. Turns grouped by parentheses were measured as one segment. The pole turn (turn 1) has the highest voltage for the same current, followed by turn 2 and turns (3,4) (Fig. 5). At a peak current of 109 A, the voltage of turns (5,6,7) increases only to 27 µV. No voltage rise is observed in turns (8,9,10), indicating that its $I_c > 109$ A. The corresponding $E(I)$ curves on a double log scale are shown in Fig. 6.

Using an electric-field criterion $E_c = 10^{-4}$ V/m, one has $I_{c,\text{coil}} = 146$ A, $n = 39$; $I_{c,A} = 144$ A, $n = 40$; and $I_{c,B} = 153$ A, $n = 36$. Both layers have comparable I_c values.

The coil I_c is defined as the lowest I_c of all the turns. Thus we have $I_c = 154$ A for a 2×3-turn coil and $I_c = 118$ A for a 2×10-turn coil. Both coils have the same cross-section geometry as YC01 and YC02, respectively, but with infinitely-long straight sections.
similar voltages; turn 2 and turn (3,4) have similar voltages (Fig. 5). Their \(I_c \) values, as determined by the same \(E_c \) criterion, however, are not equal (Fig. 6).

VI. DISCUSSION

The measured \(I_c \) of the whole coil or a segment of the coil is used to assess the coil fabrication technology. Magnetic field and mechanical issues are two major factors influencing \(I_c \) in a coil. Magnetic effects result from the field dependence of the conductor \(I_c \). Mechanical issues are mainly strain-induced \(I_c \) reduction that could be 1) pure mechanical, e.g., conductor handling, coil winding and pre-load; 2) coupled with thermal stress/strain, e.g., in a ramp; and 3) coupled with magnetic field and current distribution, e.g., Lorentz load and hoop stress. The primary goals of the coil technology development are 1) to separate the \(I_c \) reduction due to the magnetic-field effect and that due to the mechanical effect [24] and 2) to identify, understand, and minimize the \(I_c \) reduction resulting from the coil fabrication process.

The 2D model (section IV) establishes a baseline \(I_c \) considering only the field-induced \(I_c \) reduction. Both YC01 and YC02 had good performance, as the measured coil \(I_c \) reached \(\geq 90\% \) of the expected values (Table I), indicating the preliminary coil fabrication techniques are acceptable.

TABLE I	MEASURED AND EXPECTED \(I_c \) FOR YC01 AND YC02.			
Segment	YC01	YC02		
	Coil	Turn 1	Turn 2	
a. Measured \(I_c \) (A)	146	107	100	102
b. Expected \(I_c \) (A)	154	118	124	121
\(a/b \)	95\%	91\%	81\%	84\%

There may be two reasons why the coils did not reach their full potential, in addition to the possible non-uniform \(I_c \) as a function of conductor length. The actual coil and turn \(I_c \) could be lower than the calculated values shown in Table I due to 1) the 2D model neglects slightly enhanced end fields for a racetrack coil and 2) the \(B_y \)-dependence of \(I_c \) (\(B_y \parallel \) tape surface) is not considered. The other reason is that the strain-dependence of the conductor \(I_c \) is not considered in the 2D electromagnetic model [24]. For example, the bending strain of the pole turn around the curvature of the pole-island (radius of 19 mm) was estimated to be \(\sim -0.13\% \) (compressive) that may account for a reversible 2\% \(I_c \) reduction from a straight sample [25]. The measured turn and layer \(I_c \) of coil YC02 suggest strain-induced \(I_c \) reduction might occur. First, both layers should have similar \(I_c \) if only magnetic-field effects were in play. Second, inner turns should have higher \(I_c \) as predicted by the 2D model (Fig. 3) while the measured results show they were the lowest (Figs. 5 and 6, Table I).

The ramp, physically next to the pole turn, may be another segment requiring more investigation. The strain state of the ramp is not easily accessible as it experiences both easy- and hard-way bend that may reduce the local \(I_c \) [25]. The measurement of layer B included the ramp in both coils. In coil YC01, layer B had the highest \(I_c \) while in coil YC02, layer B had the lowest \(I_c \). For coil YC01, the ramp was more gradual, starting from the far end of the straight segment while in coil YC02, the ramp was restricted to the near ends of the straight segments in both layers. A long ramp is favorable in terms of coil winding as it makes the hard-way bend transition in a more continuous and gentle way.

On the other hand, some ambiguity on the \(I_c \) determination arose from the \(E_c \) criterion. Here \(E = V/L; \) \(V \) and \(L \) are the segment voltage and length, respectively. The criterion is generally used for short samples where \(I_c \) is usually uniform. When the conductor length increases (e.g., in a coil), however, \(I_c \) fluctuation could occur along the length due to the field/strain effects as mentioned above. In this case, \(I_c \) based on criteria involving averaging over \(L \) may be ambiguous as its value depends on \(L \) while the actual \(V/I \) is fixed. For example, even though the coil and layer B have similar \(V/I \) curves in YC02 (Fig. 5), \(I_{c,coil} > I_{c,B} \) since \(I_{c,coil} \approx 2L_B \) (Fig. 6). To reduce the effect due to averaging over the length, one may define a quench current (\(I_q \)) based on a certain \(V \). Thus, segments with similar voltages always have similar \(I_q \) regardless of their lengths. The voltage level from which \(I_q \) is defined could be determined based on the voltage threshold to be used in a quench detection system.

VII. SUMMARY AND NEXT STEPS

Two YBCO subscale racetrack coils (2 × 3-turn and 2 × 10-turn) were fabricated and tested at 77 K. The commercial conductor is Kapton-insulated and has a typical \(I_c \) of 180 A and \(B_y \) value of 32 at 77 K, self-field. The coils are supported by G10 side rails and are not vacuum impregnated. Coil \(I_c \) is measured to assess the fabrication techniques. The expected coil \(I_c \) is calculated using a 2D model considering the magnetic-field effect. Both coils reached 80%–95% of the expected \(I_c \), indicating the general feasibility of the coil fabrication process.

Magnetic and mechanical effects will be studied in more details. Compatibility with vacuum impregnation procedures will also be investigated. More coils will be wound and measured at 4.2 K. Successful coils will be tested as inserts in existing high-field Nb3Sn dipoles.

ACKNOWLEDGMENT

The authors thank P. Bish, R. Hannaford, H. Higley, C. Kozy, N. Liggins, J. Swanson for their technical expertise, and B. Bingham, L. Lilley, D. Tam and F. Trillaud for their help with the test.

REFERENCES

