Title
Disruption Tolerant Shell (SYS 13)

Permalink
https://escholarship.org/uc/item/6434t2m8

Authors
Martin Lukac
Lewis Girod
Deborah Estrin

Publication Date
2006
Disruption Tolerant Shell

Martin Lukac, Lewis Girod, Deborah Estrin
CENS System Lab – http://research.cens.ucla.edu

Introduction: Data Collection and System Management in Challenged Networks

Meso American Subduction Experiment
- **Extensive:** 500 Km from Acapulco through Mexico City to Tampico
- **Density:** 1 sensor every 5-10 Km
- **High bandwidth:** data acquisition rate: 3 x 24 bit channels at 100Hz each
- **Online and reliable:** semi real-time (on the order of days), reliable data delivery to UCLA for analysis
- **Online system management:** query state, change configuration, update binaries
- **Application driven topology:** application determines sensor placement. Infrastructure does not

Problem Description: End-to-End Tools Fail at Critical Times

- **Frequent unpredictable disconnections**
 - Rainy season: sites flood (some 24x7) and trees grow
 - Wind/weather: misaligned antennas
 - Equipment malfunction: amps burn, voltage regulators break
- **Poor and unstable links**
 - Connectivity is a secondary concern for site selection
 - Stretched links highly susceptible to weather and environment
- **Human effort is a critical resource**
 - Installation, maintenance, protection

Software Requirements
- **Data delivery** – Bandwidth driven
 - Bandwidth: 20-40 of MB per day per station
 - Latency: get the data eventually, but reliably
 - Many to one routing
- **System management** – Latency driven
 - Bandwidth: usually less than 10’s of KB’s
 - Latency: as fast as possible
 - One to all routing and back

Proposed Solution: Disruption Tolerant Shell

Data Delivery: DTN
- Use Delay Tolerant Networking techniques
- Buffer data into hour long bundles (1-3 MB)
- Deliberate one hop bundle transfer
- Path to sink determined by best ETX

System Management: DTS
- **Existing management tool:** remote shell (ssh)
- **Modified management tool:** Disruption Tolerant Shell (DTS)
 - Asynchronous remote shell to all nodes in network simultaneously
 - Provides node management capabilities when end-to-end connections are unavailable or fail
 - Ensures that commands will succeed: as long as there is eventually a connection between a node and any other node that already has the command

DTS Results - Cuernavaca
- Compared latency of DTS to parallel ssh
- DTS is **faster 90% of the time**, comparable the rest of the time
- DTS reaches **100% of nodes**
 - ssh requires retries from the source node
 - Latency can vary by day, but DTS always faster or comparable to ssh

DTS Network Service: StateSync
- StateSync: Reliable and efficient publish-subscribe mechanism
- Implements a broadcast dissemination protocol
 - Published data is hop-scoped
 - DTS publishes commands and responses one hop
 - Works well for applications that require:
 - Reliable delivery
 - Have a few Kbytes of data to share
 - Data lifetime is long compared to system latency requirements
 - Suitable for DTN since it does not use end-to-end connections
- StateSync data model: tables of key value pairs
 - DTS has a command table and response table
- **Logging mechanism**
 - Do not republish whole table: only send changes to tables
 - More efficient use of bandwidth in face of disconnections
- **Retransmission protocol**
 - Keeps retrying on individual links
 - Not affected by path disconnections
 - No overhead of end-to-end connection