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Abstract

It is currently difficult to build practical and reliable programming
systems out of distributed and resource-constrained sensor devices ) .
The state of the art in today’s sensornet programming is centeredKeyworqS. W|re|es§ Sensgr Networks, Macroprogramming, En-
around a component-based language called nesC. nesitea €9y Efficiency, Serializability, Deadlocks
level language—a program is written for an individual node in the
network—and nesC programs use the services of an operating SY$1  Introduction
tem called TinyOS. We are pursuing an approach to programming ~*
sensor networks that significantly raises the level of abstraction Wireless sensor networks consist of a system of distributed sen-
over this practice. The critical change is one of perspective: rather sors embedded in the physical world. They are increasingly used
than writing programs from the point of view of an individual node, in scientific and commercial applicatioris[[15] 28]. However, con-
programmers implement @ntral program that conceptually has  structing practical and reliable wirelessly-networked systems out of
access to the entire network. This approach pushes to the compileithem is still a significant challenge. This is because the programmer
the task of producing node-level programs that implement the de- must cope with severe resource, bandwidth, and power constraints
sired behavior. on the sensor nodes as well as the challenges of distributed sys-
We present théleiades programming language, its compiler, tems, such as the need to maintain consistency and synchronization
and its runtime. Theleiades language extends the C language with among numerous, asynchronous loosely coupled nodes.
constructs that allow programmers to name and access node-local Current practice in sensor network programming uses a a highly
state within the network and to specify simple forms of concur- concurrent dialect of C called nesG [5], which is@de-level lan-
rent execution. The compiler and runtime system cooperate to im- guage — a nesC program is written for an individual node in the
plementPleiades programs efficiently and reliably. First, the com- network. nesC statically detects potential race conditions and op-
piler employs a novel program analysis to transkitgades pro- timizes hardware resources using whole-program analysis. nesC
grams into message-efficient units of work implemented in nesC. programs use the services of the TinyOS operating sydtem [11],
ThePleiades runtime system orchestrates execution of these units, which provides basic runtime support for statically linked pro-
using TinyOS services, across a network of sensor nodes. Sec-grams. TinyOS exposes an event-driven execution and scheduling
ond, the compiler and runtime system employ novel locking, dead- model and provides a library of reusable low-level components
lock detection, and deadlock recovery algorithms that guaranteethat encapsulate widely used functionality, such as timers and ra-
serializability in the face of concurrent execution. We illustrate dios. TinyOS was designed for efficient execution on low-power,
the readability, reliability and efficiency benefits of th&iades limited-memory sensor nodes callewtes.
language through detailed experiments, and demonstrate that the nesC and TinyOS provide abstractions and libraries that sim-
Pleiades implementation of a realistic application performs similar  plify node-level sensor-network application programming, but en-
to a hand-coded nesC version that contains more than ten times asuring the efficiency and reliability of sensor network applications

General Terms Performance, Design, Languages, Reliability,
Experimentation

much code.
Categories and Subject Descriptors D.1.3 [Programming Tech-

niques|: Concurrent Programming—Distributed programming;

is still tedious and error prone (Sectibh 2). For example, the pro-
grammer must manually decompose a high-level distributed algo-
rithm into programs for each individual sensor node, must ensure

D.3.2 [Programming Languages]: Language Classification—Specializedat these programs efficiently communicate with one another, must

application languages
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implement any necessary data consistency and control-flow syn-
chronization protocols among these node-level programs, and must
explicitly manage resources at each node.

We are pursuing an alternative approach to programming sensor
networks that significantly raises the level of abstraction over cur-
rent practice. The critical change is one of perspective: rather than
writing programs from the point of view of an individual node in
the network, programmers implemententral program that con-
ceptually has access to the entire network. This change allows a
programmer to focus attention on the higher-level algorithmics of
an application, and the compiler automatically generates the node-
level programs that properly and efficiently implement the appli-
cation on the network. In the literature, this style of programming
sensor networks is known asacroprogramming [29].



We have instantiated our macroprogramming approach in the notion of consistency and show that tieiades implementation
context of a modest extension to C calleriades, which aug- of the concurrent execution is reliable. We finally demonstrate
ments C with constructs for addressing the nodes in a network and the utility of control flow migration within a simple network
accessing local state from individual nodes. These features allow information gathering example.

programmers to naturally express the global intent of their sensor-  pocaarchers have previously explored abstractions for program-
_network programs V\_/ithc_Jut worrying about the low-level details of ming sensor networks in the aggregate [[8, 28, 29], as well as
inter-node communlcatlon and _node-_level resource management;yermediate program representations to support compilation of
By default, aPleiades program is defined to have a sequential such programé [23]. However, to our knowledge, a self-contained
thread of control, which provides a simple semqntics _for program- macroprogramming system fo,r motes—one that éenerates the com-
mers to understand and reason about. HoweVeigdes includes plete code necessary for stand-alone execution—has not previously
a novel language construct for parallel iteration catiar, which been explored or reported oPleiades is also related to research
can be used, for example, to iterate concurrently over all the nodes,, o ajjel and distributed systems. Unlike traditional parallel sys-
in the network or all one-hop neighbors of a particular node. tems and research on automatic parallelization, we are primar-
ThePleiades compiler translateBleiades programs into node- . interested in achieving high task-level parallelism rather than
level nesC programs that can be directly linked with standard 515 paralielism, given the loosely coupled and asynchronous na-
TinyOS components and thRleiades runtime system and exe- o of sensor networks. Further, we target concurrency support
cuted over a network of sensor motes. '_I'he key tech_nlcal Cha”engetoward minimizing energy consumption rather than latency, since
for Pleiades is the need to automatically implement high-level cen- g4 networks are primarily power constrained. Unlike traditional
tralized programs in an efficient and reliable manner on the nodes yjg iy teq systemsleiades features a centralized programming
in the network. ThePleiades compiler and runtime system coop-  oqe| and pushes the burden of concurrency control and synchro
erate to meet this challenge in a practical manner (Sefclion 3). This 1, a1ion to the compiler and runtime. A more detailed comparison
paper makes the following contributions: with related work is presented in Sect[dn 5.
e Automatic program partitioning and migration for minimiz-
ing energy consumption.Energy efficiency is of primary con- 2. ThePleiades Language
cern for sensor nodes because they are typically battery-powered. . .
Wireless communication consumes significant battery energy, 2-1 Design Rationale
and so it is critical to minimize communication costs among Pleiades is designed to provide a simple programming model that
nodes Pleiades uses a novel combination of static and dynamic addresses the challenges and requirements of sensor network pro-
information in order to determine at which node to execute each gramming Pleiades’ sequential semantics makes programs easy to
statement of @leiades program. A compile-time analysis first  understand and is natural when programming sensor networks in a
partitions a program’s statements imodecuts, each represent-  centralized fashion. Concurrency is introduced in a simple manner
ing a unit of work to be executed on a single node. The runtime appropriate to the domain, via tleéor construct for node itera-
system then uses knowledge of the actual nodes involved in ation. At the same time, the sequential semantics is still appropriate
nodecut’s computation to determine at which node it should be for the purpose of programmer understanding, bec@lsiades
executed in order to minimize the communication overhead. ensures serializability off ors. This strong form of consistency
and reliability is important for a growing class of sensor network
applications, like car parking and the part of an application respon-
Sible for building a routing tree across the nodes. For these kinds
of applications, we argue thBteiades’s sequential semantics is the
right one. We have also usetkiades for applications such as rout-
port concurrency while ensuring reliability, tRéeiades runtime ing, localization, time synchronization and data collection, which
system guaranteesrializability for eachcf or : the effect of a require consistency for at least some program variables. To our
cfor loop always corresponds to some sequential execution of knowledge, no other macroprogramming system guarantees even

the loop. To achieve this semantics, the runtime system automat-Weak forms of consistency. ) o

ically synchronizes access to variables ameig iterations via 'While Pleiades provides a sequential semantics, it nonetheless
locks, alleviating the programmer of this burden. Locking has the €fficiently and naturally supports event-driven executRisiades
potential to cause deadlocks, so the compiler and runtime system@S Special language support for sensors and timers that provides

also support a novel distributed deadlock detection and recovery & Synchronous abstraction for event-driven execution. The syn-
algorithm forcf or s. chronous semantics is easy for programmers to understand and

fits well with the sequential nature ofRieiades program. Under

* A mote-based implementation and its evaluationWe have  the covers, the language constructs are compiled to efficient event-
implementedPleiades on the widely used, but highly memory-  g§riven nesC code.
constrained, mote platform. The motes we use have 10kB RAM
for program variables and 48kB ROM for compiled code. Our 2.2 Parking Cars with Pleiades
!mplementatlon generates event-driven node-level nesC COdethaWe illustrate the language features Ritiades and the benefits
is conceptually similar to what a programmer would manually o\ hrovide over node-level nesC programs through a small but
write today. We evaluate three applications belonging to three

. . . realistic example application. It involves low cost wireless sensors
different classes (Sectidp 4). We first compare the performance y e deployed on streets in a city to help drivers find a free space.
of a sophisticated pursuit-evasion game macroprogram with that

; . ) (According to recent survey$ [27], searching for a free parking
?r]: a Tand'COdEd nesC ve_rsu_;_n Wrgten by othérs [7]. Vxe find that go1 aiready accounts for up to 45% of vehicular traffic in some
%P e|_adeT pro?r:am i%;'gn' ||can Y mo:le (iomtpac’ij(t e dsource \gmetropolitan areas.) Each space on the street has an associated
code size less than 10% as large), well-structured, and easy t0gonsor node that maintains the space’s status (free or occupied).
understand. At the same time, tRiiades implementation has

bl ¢ ith th i C imol tati The goal is to identify a sensor node with a free spot that is as
comparablé periormance with (n€ native nest. implementation. 1556 tg the desired destination of the driver as possible. For ease
We then evaluate a car parking application that requires a strict

of explanation, we define distance by hop count in the network, but

e An easy-to-use and reliable concurrency primitive.Concur-
rent execution is a natural component of sensor network applica-
tions, since each sensor node can execute code in parallel. How
ever, with concurrency comes the potential for subtle errors in
synchronization that can affect application reliability. To sup-
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20:
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27:
28:
29:
30:
31
32:

#include "pl ei ades. h"

bool ean nodel ocal isfree=TRUE;
nodeset nodel ocal nei ghbors;
node nodel ocal neighborlter;

voi d reserve(pos dst) {

bool ean reserved=FALSE;

node nodelter, reservedNode=NULL;

node n=cl osest _node(dst);

nodeset | oose nToExam ne=add_node(n, enpty_nodeset());
nodeset | oose nExani ned=enpty_nodeset ();

cif(isfree@) {

reser ved=TRUE;
i sfree@=FALSE;
return;

reser vedNode=n;

s}
: while(!reserved & !enpty(nToExam ne)){

cfor(nodel ter=get _first(nToExan ne);nodelter!=NULL;
nodel ter = get_next(nToExam ne)){
nei ghbor s@aodel t er =get _nei ghbor s(nodel ter);
for(neighborlter@odelter=get_first(neighbors@odelter);
nei ghbor |t er @odel t er! =NULL;
nei ghbor | t er @odel t er =get _next ( nei ghbor s@odel ter)){
i f (! menber (nei ghbor | t er @odel t er, nExani ned))
add_node( nei ghbor It er @odel t er, nToExam ne) ;

}
if(isfree@odelter){
if(!reserved){
reserved=TRUE; reservedNode=nodelter;
i sfree@odel t er =FALSE;
break;

}

renove_node(nodel t er, nToExani ne) ;
add_node( nodel t er, nExam ned) ;

}

33}

34:

}

it is straightforward to base this on physical distance. We consider

Figure 1. A street-parking application iRleiades.

an implementation of this application ileiades as well as two
node-level versions written in nesiG [5]. We show thatRleades

version is simultaneously readable, reliable, and efficient. Each of
the two nesC versions is more complex and provides reliability or

efficiency, but not both simultaneously.

Figureld shows the key procedure that makes up a version of the

street-parking application written iPleiades. When a car arrives

near the deployed area, a space near the driver’s indicated desti

nation is found and reserved for it by invokingser ve, passing
the car’s desired location. Theser ve procedure finds the closest

sensor node to the desired destination and checks if its space is fre
If so, the space is reserved for the car. If not, the node’s neighbor

are recursively and concurrently checked.

view of a sensor network. We describe the associated language;

The code in Figurl1 makes critical usertdiades’s centralized

constructs in turn.

Node Naming.Pleiades provides a set of language constructs
that allow programmers to easily access nodes and node-local stat
in a high-level, centralized, and topology-independent manner. The
node type provides an abstraction of a single network node, and
thenodeset type provides an iterator abstraction for an unordered

collection of nodes. For example, varialigline 8) inreserve

holds the node that is closest to the desired position (the code for

the cl osest _node function is not shown), andToExani ne (line
9) maintains the set of nodes that should be checked to see if the
associated space is free.

The set of currently available nodes in the network is returned
by invoking get _networ k_nodes(), which returns anodeset .
Pleiades also provides aget _nei ghbors(n) procedure that re-
turns anodeset containingn’s current one-hop radio neighbors.

In Figureld, the eser ve procedure useget _nei ghbor s (line 18)
to add an examined node’s neighbors to itfieExani ne set. The
Pleiades runtime implementget _nei ghbor s by maintaining a set
of sensor nodes that are reachable through wireless broadcast.

Node-Local Variables. Pleiades extends standard C variable
naming to address node-local state. This facility allows program-
mers to naturally express distributed computations and eliminates
the need for programmers to manually implement inter-node data
access and communication. Node-local variables are declared as
ordinary C variables but include the attributeel ocal , as shown
for thei sfr ee variable (line 2) in Figurgll. The attribute indicates
that there is one version of the variable per node in the network.

A node-local variable is addressed insid@leiades program
using a new expressiorar @, wherevar is anodel ocal variable
ande is an expression of typeode. For example, the eserve
procedure uses this syntax to check if each nodeToExan ne
is free (line 23). An expression of the formar @ can appear
anywhere that a C I-value can appear; in particular, a node-local
variable can be updated through assignment.

All variables not annotated amdel ocal are treated as ordi-
nary C variables, whose scope and lifetime respect C’s standard se-
mantics. InPleiades, we call theseentral variables, to distinguish
them from node-local variables. In our example cadser ved is
a central variable (line 6), which is therefore shared across all nodes
in the network.

Concurrency. By default, aPleiades program has a sequential
execution semantics. Howeverleiades also provides a simple
form of programmer-directed concurrency. Té¢feor loop is like
an ordinaryf or loop but allows for concurrent execution of the
loop’s iterations. Acfor loop can iterate over anyodeset, and
the loop body will be executed concurrently for each node in the
set. For example, theeser ve procedure in FigurEl1 concurrently
iterates over the nodes nToExani ne (line 17), in order to check
if any of these nodes is free.

While concurrency is often essential to achieve good perfor-
mance, it can cause subtle errors that are difficult to understand
and debug. For example, a purely concurrent semantics of tive
in reserve can easily cause multiple free nodes to read a value
of false for ther eserved flag. This will have the effect of mak-
ing each such node believe that it has been selected for the new
car and is therefore no longer free. To help programmers obtain the
benefits of concurrency while maintaining reliability, thieiades
compiler and runtime system ensure that the executionodfa

is alwaysserializable: the effect of acf or always corresponds to

some sequential execution of the loop.rkser ve, serializability
ensures that only one free node will reserve itself for the new car;

€the other free nodes will see the updated value ofriszer ved
Sﬂag at that point. Sectidn 3.2 explains our algorithm for ensuring

serializability forcf or loops.

Pleiades allowscf or s to be arbitrarily nested. The serializabil-
ty semantics of a singlefor is naturally extended for nested
cf ors. Intuitively, the innercf or is serialized as part of the iter-
ation of the serialized outerf or . So, in Figurddl, the program-

fmer could have replaced the simgler in line 19 with acfor,

and the execution would be correct. It would also increase the

available concurrency because multiple threads from the nested
cfor iterations would be active at a node. However, in this case,

it would not be efficient to use &f or because the message and



latency overheads involved in starting and terminating the concur- sion that is efficient but unreliable. In contrast, teiades version
rent threads and remotely accessitiyani ned andnToExam ne is both reliable and efficient.
would offset the potential concurrency gain from executing on mul-
tiple neighboring nodes afodel ter. In general, a programmer  2.3.1 A Centralized nesC Implementation
must weigh the benefits of fine-grained concurrency through nestedg;t it is possible to implement a centralized version of the algo-
cfors against the start-up and finalization overheads of such con- ithmin nesC, wherein most of the algorithm is executed on a single
currency. ) ) S ) node. The major advantage of this approach is its relative simplic-

Loose Variables.While serializability provides strong guaran-jyy for programmers. However, this version is extremely inefficient
tees on the behavior aff or loops, sensor network applications  in terms of both message cost and latency. Fifilire 2 shows the core
often have variables that do not need serializability semantics andfynctions that comprise such a program. The overall logic is similar
can obtain timeliness and message efficiency benefits by using ay that of thepleiades version from Figur&ll. However, program-
looser consistency model. Examples include routing beacons thatmers must explicitly manage the details of inter-node communica-
are used to maintain trees for sensor data collection, and sensor valiioy Because nesC uses an asynchronsplit;phase approach to
ues that need to be filtered or smoothed using samples from neigh-gch communicatiof[5], the application’s logic must be partitioned
boring nodesPleiades lets a programmer annotate such variables 4cross multiple callback functions at remote read/write boundaries.
asl oose, in which case accesses to these variables are not synchro- - the control flow is as follows. A taskeserve (line 9) is
nized within acf or. The consistency model used for loose vari- ghawned on the node closest to the car, which, in turn, calls the
ables closely follows release consistency senjarﬁds [13]. Writes t0 ¢| gsest _node function (line 10) in theTopol ogy component (this
a loose variable can be re-ordered. The beginning of adiew component is not shown). Since all tasks in nesC run to comple-
statement or the end of any activkor statement act as synchro-  jon,"and sinceTopol ogy. cl osest node performs a split-phase
nization variables, ensuring that the current thread of control has 5okup operation for the desired osest node, the callback func-
no more outstanding writes. _ tion f ound_node is later invoked byfopol ogy (line 12). The call-

In Figure[1, variablesiToExani ne andnExani ned are anno-  pack creates a new taskansf er control (line 14), which ulti-
tated asl oose (lines 9 and 10) in order to gain additional con-  mpately triggersioReser ve on thecl osest node (line 21).
currency and avoid lock overhead on them. These annotations  The rest of the algorithm then runs centrally on th@sest
are based on the two observations that it is safe to examine anode.doReser ve, executing orcl osest, either finds itself free

node innToExani ne multiple times, and that only ef or itera- (line 22) or creates theToExani ne set with its current neighbor set
tion on n.odel ter can remove the candidate nomiaiellt er from (line 26). Next, it concurrently and asynchronously reisis ees
nToExani ne. Alternatively, the programmer can derive the same i1 ToExani ne (line 27) usingar ead of the Remot eRWcomponent
concurrency in this case without usihgose by temporarily stor- (not shown). When the asynchronous read completes, it signals
ing the set of nodes that would be addechi@Exani ne in line ar ead_done (line 29), andcont i nue_r eser ve is called (line 30).

21 and deferring th@dd_node operations on this set until after  g,cn reads are locally cached in ferot eRWcomponent, so that
statement 31. In general, the programmer can derive maximum cont i nye_r eser ve can synchronously read them in line 37. If no

concurrency while er!sqring ser.ializability by organizing her code pode with a free spot is found (lines 37-41), more neighboring
so that writes on serialized variables happen toward the end of agges of the current nodes are searched using another asymesiron

cfor. , o read (line 42), which, ultimately caltsii | d_nor e_nodes (line 31).
By default, loose variables are still reliably accessed, but the  gjnce the code is executed on a single node, this approach
programmer can further annotate a loose variable tmbel i abl e, maintains a relatively straightforward structure, similar to that of

so that the implementation can use the wireless broadcast facility. ihe pleiades code. The main drawback of this approach to node-
In Sectior[}, we evaluate the street parking example with reliable |eye| programming is inefficiency. Message cost is high because
I_oose varlables_and a separate application that primarily uses unreq sy ge of every node is centrally fetched and checked from a
liable loose variables. o _ . single node. In contrast, theleiades version from Figurll uses

Automatic Control Flow Migration. Ultimately a centralized  5cfor to allow each node to locally process its own data, using the
Pleiades program must be executed at the individual nodes of the gqe migration techniques described in Sedfibn 3. Thus, even for
network. As described in Secti@h 3, thieiades implementation small example topologies of two-hop radius, it can be shown that
automatically partitions &leiades program into units of work 10 the plejades version requires around half the messages required
be executed on individual nodes and determines the best node Ofhy the nesC version; this message countfefades includes all

which to execute each unit of work in order to minimize communi- - ¢onrol overhead for code migration and for ensuring serializability
cation costs. For example, the first five statements of the code (linesgt ¢ or s. The concurrentf or iterations inPleiades also find a

6-10) execute at the node invokingser ve. The implementation  free spot earlier than is possible in the nesC version. In the nesC
then migrates the execution of statements in lines 11-16 tomode yersion cont i nue_r eser ve in line 42 waits orRenot eRW ar ead
This is because it is cheaper to simply transfer contral toan to for all remote neighbors inToExani ne to be asynchronously read,

first readi sfree@ and later write it back if necessary. Similarly,  andhyi | d_nor e_nodes in line 51 similarly waits until all remote
each iteration of thef or loop will execute at the node identified | sty ees innToExani ne are read.

by the current value afodel t er (line 17). While it does not hap-
pen in this example, the execution of a singfer iteration can 2.3.2 A Distributed nesC Implementation

also successively migrate to other nodes. . A
ymig The Pleiades version of car parking in Figurigl 1 does a breadth-

first search around the closest node, moving to the next depth in a
distributed fashion only if no free slot is found in the current one.
Pleiades provides several important advantages over the traditional Unfortunately, a distributed implementation in nesC that provides
node-level programming for sensor networks in use today. To make the same behavior as tléeiades version would be exceedingly
things concrete, we consider how the street-parking algorithm complex. Such an implementation would require the programmer
would be implemented in nesC. We describe two different nesC to manually implement many of the same concurrency control tech-
implementations: a centralized version that is relatively simple and niques thatPleiades automatically implements farf or s, as dis-
reliable but highly inefficient, and a more complex distributed ver- cussed in Sectidn 3.2. For example, to ensure that exactly one free

2.3 Parking Cars with nesC
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modul e ReserveM {

uses { ... }

provides { ... }

} inplenentation {

nodeset nToExam ne, nExami ned;

bool ean reserved, isfree, is_renpte_free;

node cl osest, reserved_node, req, iter, iterl;
pos dst;

task void reserve() {
call Topol ogy. cl osest _node(dst);

. event void Topol ogy. f ound_node( node n){

closest = n; req=TOS_LOCAL_ADDRESS;
post transfer_control ();

o}

: task void transfer_control () {

uint8_t i;
/1 Trigger renote doReserve() at ‘‘closest’’ node
/I A'so, send ‘‘req’ and ‘‘closest’’ node val ues

o)

. task void doReserve() {

if (isfree) {
reserved_node=TOS_LOCAL_ADDRESS;
call Msglnt.send_reply(req, FOUND);}

el se {
nToExani ne=cal | Topol ogy. get _nei ghbors();
cal | Renot eRW ar ead(nToExani ne, | SFREE) ; }

o)

: event void RenoteRW aread_done(done_t done) {

i f (done==I SFREE) continue_reserve();
else if (done==NEl GHBORS) bui | d_more_nodes();

: void continue_reserve() {

for(iter=get_first(nToExam ne);iter!=NULL;
i ter=get _next(nToExanmine)) {
renove_node(iter, nToExami ne);
add_node(iter, nExam ned);
if(is_remte_free=call RenoteRWread(iter,|SFREE)){
reserved_node=iter; reserved=TRUE;
call RennteRWawrite(iter,|SFREE 0); }
}
if (!reserved)
cal |l Renot eRW ar ead( nToExami ne, NEI GHBORS) ;

voi d buil d_more_nodes(){
nodeset nl;
for(iter=get_first(nToExam ne);iter!=NULL;
i ter=get _next(nToExamine)) {
nl=(call RenpoteRWread(iter, NEIl GHBORS));
for(iterl=get _first(nl); iterl!=NULL;
iterl=get_next(nl))
i f (! menber (iterl, nExam ned))
add_node(iterl, nToExani ne); }
cal |l Renot eRW ar ead( nToExami ne, | SFREE) ;
}
}

Figure 2. Reliable but inefficient street-parking in nesC.

XNORWONE

modul e ReserveM {
uses { ... }
provides { ... }

} inplementation {
bool ean isfree, seen,
pos dst;

node start_node[], req, orig, reserved_node;
uint8_t cnt_start_node, hopcount;

reserved;

task void reserve() {

. call Topol ogy. cl osest _node(dst);

'}

1}

1

cevent void Topol ogy. f ound_node(node n){

© orig=TOS_LOCAL_ADDRESS;

. start_node[ 0] =n, reqg=n, hopcount=HOP_MAX;

: cnt_start_node=1;

. post transfer_control ();

:task void transfer_control () {

couint8_t i;

. for (i=0;i<cnt_start_node;i++) {
/1 Trigger renote doReserve() at every start_node[i]
/I Al'so, send each node our req, orig, hopcount val ues

o}

‘task voi d doReserve(){

. if(!seen) {seen=TRUE;}
o if (isfree & !seen){

reserved_node=TOS_LOCAL_ADDRESS,;
i sfree=FALSE;
call Msglnt.send_reply(req, FOUND); }

. el se flood_nei ghbors();

1}

33:void flood_nei ghbors() {

34: nodeset nl =Topol ogy. get _nei ghbors();

35 node iter;

36: hopcount - -;

37: if (hopcount>0) {

38. cnt_start_node=0;

39: for (iter=get_first(nl);iter!=NULL;iter=get_next(nl))
40 start_node[cnt_start_node++] =iter;

41: post transfer_control (); }

42:}

43:event void Msglnt.receive_reply(node rep, nsg_t msg){
44: if (msg==FOUND) {

45: if (!reserved){

46: reserved_node=rep;

47: call Msglnt.send_reply(rep, ACCEPT);

48: call Msglnt.send_reply(orig, FOUND); }

49: else call Mglnt.send_reply(rep, REJECT); }

50: el se if(msg==REJECT){i sfree=TRUE; }

51:}

52:} //end inplenentation

Figure 3. Efficient but unreliable street-parking in nesC.



space is reserved for a car, the programmer would have to imple-2.4 Other Features ofPleiades

ment a form of distributed locking for conceptually central vari- Pleiades includes other language constructs to support the imple-

ables. In gen_eral the use of locking ‘.NOUld theq require ”_‘af‘ua' SUP” mentation of common sensor network idioms, which we briefly de-
port for distributed deadlock detection or avoidance. Similarly, to scribe '
ensure that the closest free space Is always_ found, the programmer  gensors and TimersAs mentioned earlieRleiades uses spe-
\t/r\gouldthavit(t) manuall;:hsytnclaronlrée execluttloln acr(iss tg% ndeeS Ncial kinds of variables as an abstraction for sensors, which are crit-
€ network, genshdurel ata deptis completely explored before ical components of sensor-network applications. Sensor readings
moving onto deptll+1. . are asynchronous events, aPldiades provides a facility to syn-
Therefore, in practice a distributed version in nesC would forgo chronously wait for such an event to occur. In particubgiades's
fslyncéhrontl)zau%n, as SI?OWH in dFtII‘?lEhI 3. Htere c\j/ve doa dd'sf[”bfl.’tzd wai t function takes a sensor variable and returns when the sensor
foo Ing-t _?_ie se?rcl i aroun ‘ (Ial ¢ ose:ﬂ node, in or erkod N0 akes a reading. At that point, the associated variable contains the
ree spot. The control low IS as Tollows. AILEESEr Ve IS INVOKE most recent reading and the program can take appropriate action.
(line 9), doReser ve is ultimately triggered, in a manner similarto g example, this mechanism is used in order for the car-parking
the previous version. The only difference here is thzReser ve application to wait for notification that a parked car has left its
may be active at multiple n_odes_that receive the ro_odlng req_uestspot’ at which point the spot’s sensor sets its associstédee
and may be activated multiple times by several neighbors (lines \iapie defined in line 2 of Figuf@ 1 &RUE (this operation is not
39-41). Since a node must process a request exactly once even if 't§hown), so that it can once again service remeter ve requests.

doReser ve is triggered multiple times by its neighbodsReser ve A similar technique is used to model timers, which fire at some
uses a flageen (line 26) to ignore all but the first request. user-specified rate.

| To limit the mémb%r of tdl:pllcagtehtr)equesgzn?t a notde, thﬁ code " \odules. A Pleiades program consists of a numbermbdules,
also suppresses broadcasts to neighbors whémfiteunt reaches  hioh are executed concurrently. Each module encapsulates a log-

0 (line 37{(‘ This is %n erf]fective technique when :]heﬂnet(\j/v%rk diam- ically independent application-level computation, such as building
eter is unknown and when we want to ensure the flooded requests, g et path tree rooted at a given node, computing an aggregate,
prefer shorter hops from the flooding initiator (nodeq in line

. X . N or routing application data to a given node. A module is a set of
14).recei verepl y (line 43) is a callback that is invoked by the ¢ tions that can invoke each other and define and use global and
local message interface compondbgl nt (not shown) whenever 5041 yariables of both central amddel ocal type. Since modules
a remote node sends a message. W*.“?“ aspotis found_at aremolre meant to be independent tasks, we currently provide no syn-
node, it send$OUND to the flooding initiator (line 30), which re- chronization among modules
jects all but the first successfully replying node (lines 45-49). If a '
remote node is rejected, it sets itself back to free (line 50). .

As described earlier, theleiades version performs a breadth- 3. Implementation
first search on the topology,.distributedly determining if there is @ This section describes tifdeiades compiler and runtime system.
free slot at depthl before moving on to deptti+1. By contrast, the The pejades compiler is built as an extension to the CIL infras-
flooding approach starts up the free-slot determination concurrently ¢ ,cture for C analysis and transformatién![21]. Our compiler ac-
at all network nodes by flooding the transfer of control. Given cepts apleiades program as input and produces node-level nesC

this distinction, two things follow. First, thBleiades approach is  code that can be linked with standard TinyOS components and the
always more message efficient, since it avoids multiple requests topjejades runtime system. Theleiades runtime system is a col-
the same node. Second, the flooding approach has lower latencyjection of TinyOS modules that orchestrates the execution of the
since it can find a spot more quickly when the free spot is far compiler-generated nesC code across the nodes in the network.
away. The flooding approach is also much more efficientinterms of  Thepleiades compiler and runtime cooperate to tackle two key
both messaging costs and latency than the centralized nesC versiofechnical challenges. First, they must partitioRleiades program

shown in SectionZ.3 1. o _ .. intochunks that can be executed on individual nodes and determine
Despite the latency advantage, the code in Fiire 3 is signifi- 4t which node to run each chunk, striving to minimize communi-
cantly less understandable and reliable thanPie@des version. cation costs. Second, they must provide concurrent but serializable

The programmer is responsible for explicitly managing the com- eyecution ofcf or s. We discuss each challenge in turn.
munication among nodes. For efficiency, this requires maintaining

information about hop counts and other network details. It alsore- 3.1 Program Partitioning and Migration
quires that conceptually “central” variables be packaged up and
passed among the nodes explicitly, taking care to maintain consis-
tency. For example, a special protocol is usedénei ve_reply
(lines 44-50) to ensure a consistent view of tleeer ved flag, in
order to avoid having multiple nodes be reserved for the same car.
Similarly, intransfer _control (lines 21-22), a node explicitly
sends the values of the node originating the request and the nod
closest to the destination that initiated the search. InPthiades
version, the combination of central variables ahdr s takes care

of these low-level details automatically. Finally, the flooding ver-
sion, unlike the other two versions, makes no guarantee that the
first node to reply is the topologically closest node. So, if we want
it to reliably return only a closest node, theq node executing
Msgl nt . recei ve_reply (line 43) must wait for an indeterminable
amount of time before accepting a replying node, negating the la-
tency advantage.

Partitioning. The Pleiades compiler performs a dataflow analy-
sis in order to partition ®leiades program into a set afiodecuts.
Each nodecut is then converted into a nesC dsk [5], to be executed
by the Pleiades runtime system on a single node in the network.
At one extreme, one could consider the enfitgiades program to
éae a single nodecut and execute it at one node, fetching node-local
and central variables from other nodes as needed (moving the data
to the computation). The other extreme would be to consider each
instruction in thePleiades program as its own nodecut, executing
it on the node whose local variables are used in the computation
(moving the computation to the data). Both of these strategies lead
to generated code that has high messaging overhead and high la-
tency, in the first case due to the on-the-fly fetching of individual
variables, and in the second case due to the per-instruction migra-
tion of the thread of control.

We adopt a compilation strategy f@teiades that lies in be-
tween these two extremes, involving both control flow migration
and data movement. A nodecut can include any number of state-



ments, but it must have the property that just before it is to be ex-
ecuted, the runtime system can determine the location of all the

node-local variables needed for the nodecut’s execution. We there-

fore define a nodecut as a subgraph of a program’s control-flow
graph (CFG) such that for every expression of the fean@ in
the subgraph, the |-values énhave no reaching definitions within
that subgraph.

Given this property, the runtime system can retrieve all the nec-
essary node-local and central variables concurrently, befoia-beg
ning execution of a nodecut, which improves the latency immensely

over the first strategy above. At the same time, because the runtime

system has information about the required node-local variables, it

can determine the best node (in terms of messaging costs) at which
to execute the nodecut, thereby obtaining the benefits of the sec-
ond strategy above without the latency and message costs of per-

statement migration.

Intuitively, the goal is to make each nodecut as large as possible,
in order to minimize the control and data costs associated with a mi-
gration. Since a nodecut runs to its completion without any further
communication, this approach would statically minimize the total
communication cost of a program. We make the goal of minimiz-
ing migrations precise by striving to minimize the total number of
edges in the program’s CFG that cross from one nodecut to another

of control from one sensor node to another. This optimization prob-
lem is exactly equivalent to the directed unweighted multi-cut prob-
lem, which is known to be NP-complefé [1]. Therefore, instead of
finding the optimal partition of a CFG into nodecuts, t#ieiades
compiler uses a heuristic algorithm that works well in practice, as
shown in Sectiohl4.

The algorithm starts by assuming that all CFG nodes are in the
same nodecut and does a forward traversal through the CFG, creat
ing new nodecuts along the way. For each CFG nodentaining
an expression of the formar @, we find all reaching definitions of
the I-values ire and collect the subs&of such definitions that oc-
cur withinn’s nodecut. IfRis nonempty, we induce a new nodecut
by finding a CFG nodd that dominates nodeand post-dominates
all of the nodes irR. Noded then becomes the entry node of the
new nodecut. Any such nodkcan be used, but our implementation
uses simple heuristics that attempt to keep the bodies of condition-

als and loops in the same nodecut whenever possible. The imple-
mentation also uses heuristics to increase the potential for concur-

rency. For example, the body ofcdor is always partitioned into
nodecuts that do not contain any statements from outside tire
so that these nodecuts can be executed concurrently.

The five nodecuts computed by our algorithm for the street-
parking example in FigurEl 1 are shown in Figlife 4. Nodecut 2
is induced due to the use offree@n in line 11 of FigurEl 1,
sincen is defined in line 8. The transitions from nodecut 2 to 3
and nodecut 3 to 4 are induced to keep thher body separate
from statements outside the loop, as mentioned above. Further,
an extra nodecut is induced within tieéor body (nodecut 5) to
maximize read concurrency. The heuristic attempts to separate rea
and written variables into different nodecuts so that the acquisition
of write locks, which is done before a nodecut starts execution, can
be delayed until the write locks are actually required.

In the current implementation we assume th#tieiades pro-
gram does not create aliases among node variables. Such aliasin
has not been necessary in any of our experiments witRI#igdes
language so far. It is straightforward to augment our algorithm for

generating nodecuts to handle node aliasing by consulting a static

may-alias analysis.

Control Flow Migration. ThePleiades runtime system is respon-
sible for sequentially (ignoringf or for the moment) executing

e

reserved = false

_ |reservedNode = NULL
n = closest_node(dst)

nExamined = {}

nToExamine = {n}

if(!reserved && lempty(nToExamine))

false

if(isfree@n)] -

reservedNode =
reserved = true
isfree@n = false

neigk = get_nei
neighborlter@nodelter = i
geljrs((nelghbo;s’@nodel(a

if('member(neighborlter@nodelter/- -
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d )
S true

= @ if(treserved)
> rue
~<false reservedNode = nodelter
e et s
LT isfree@nodelter = false

Nodecut 1 @ Nodecut 3 Nodecut 5

Nodecut 2

remove_node(nodelter,nToExamir(e
add_node(nodelter,nExamined)
nodelter = get_next(nToExamine)

since each such edge represents a migration of the dynamic thread

Nodecut 4

Transit Edge|

Figure 4. Nodecuts generated for the street-parking example.

When execution of a nodec@ completes at some node that
node’s runtime system determines an appropriate nodewhich

to run the subsequent nodecftand migrates the thread of con-
trol to ’. All of the Pleiades program’s central variables migrate
along with the thread of control, thereby making them available to
C'. Because of the special property of nodecuts, the runtime system
knows exactly which node-local variables are requiredChyso
these variables are also concurrently fetcheal toefore execution

of C is begun.

To determine where the next nodecut should be executed, the
runtime uses the overall migration cost as the metric. The runtime
knows the number of node-local variables needed from each node
for executing the next nodecut as well as the distances (the number
of radio hops) of these nodes relative to each other according to
the current topology. The runtime chooses the node that minimizes
the cost of transfers from within this set. For example, nodecut 2
in Figure[1 accesses the node-local varialsier ee@, as well as
two central variables eserved andreser vedNode. The cost of
running this nodecut at the node executing nodecut 1 is the cost of
fetching the value of sfree from n at the beginning of nodecut
2 and writing back sf ree if necessary. This cost is two reliable

dnessages across multiple radio hops. By contrast, if the runtime

at nodecut 1 hands off nodecut 2 to natethe cost is that of
transferring the thread of control along with the central variables.
This is only one reliable message across the same number of hops.
So,Pleiades executes nodecut 2 at

Since the nodecuts along with the set of node-local variables
cessed in each nodecut are statically supplied by the compiler,
our migration approach thus exploits a novel combination of static
and dynamic information in order to optimize energy efficiency.
We note that this approach does not require every node to keep
a fully consistent topological map, but only the relative distances
of the nodes involved in the nodecut. In our current implementa-
tion, nodes use a statically configured topological map in order to

each nodecut produced by the compiler across the sensor networkmake the migration decision; we will explore lightweight, dynamic



approaches to determine approximate topological maps as part oflock respectively on its own versions of the node-local variables

future work. i sfree andnei ghbors.i sfree uses aread lock instead of a write
o . lock even though it can potentially be modified in line 26, because
3.2 Serializable Execution otfors using a read lock first and then upgrading it to a write lock if the

To execute af or loop, thePleiades runtime system forks a sepa-  conditional in line 23 succeeds significantly enhances concurrency.
rate thread for each iteration of the loop. We call the forking thread On receiving these locks, the threads fetch the variable values from
thecf or coordinator. Program execution following thef or only the owners and begin concurrent execution of the initial nodecut
continues once all the forked threads have joined. Each forked of the cfor (nodecut 3 in Figur€l4). Threads that run on nodes
thread is initially placed at the node representing the value of the with an occupied parking space fail thé condition in line 23,
variable thecf or iterates over, and any subsequent nodecuts in the release their locks, and join with tkkéor coordinator. Threads on
thread are placed using the migration algorithm for nodecuts de- nodes that have a free space contend for a write lock on central

scribed above. A forked thread may itself executef ar state- variablesr eserved andreservedNode and have to execute the
ment, in which case that thread becomes the coordinator for the second nodecut of the or sequentially. The first thread to do so is
innercf or, forking threads and awaiting their join. selected as the winner, and other nodes do not change #feiee

To provide reliability in the face of concurrendgleiades en- status.

sures serializability off or loops. This allows programmers to cor-
rectly understand thePleiades programs in terms of a sequential
execution semantics. Theleiades compiler and runtime ensure
serializability by transparently locking variables accessed in each
cfor body. The use of locking has the potential to cause deadlocks,
so we also provide a novel distributed deadlock detection and re-
covery algorithm.

Distributed Deadlock Detection and Recovery. While the lock-
ing algorithm ensures serializability of or s, it can give rise to
deadlocks. One possibility would be to statically ensure the absence
of deadlocks, for example via a static or dynamic global ordering
on the locks. However, such an approach would be very conser-
vative in the face otfors containing multiple nodecuts, nested
and conditionatf or s, orcf or s that contain updates to node vari-
Distributed Locking. To ensure serializability, thEleiades im- ables, thereby overly restricting the amount of concurrency pos-
plementation protects each node-local and central variable accessedible. Further, we expect deadlocks to be relatively infrequent.
within acf or iteration with its own lock. We employ a pessimistic ~ ThereforePleiades instead implements a dynamic scheme for dis-
locking approach, since this consumes less memory than optimistictributed deadlock detection and recovery. While such schemes can
approaches such as versioning. To ensure serializability, a lockbe heavyweight and tricky in general [4], we exploit the fork-join
must be held until the end of the outermos$br iteration being structure of acf or to arrive at a simple and efficient state-based
executed; thus, the implementation uses strict two-phase locking. deadlock detection algorithm. Our algorithm requires only two bits
However, locks are acquired on demand rather than at the begin-of state per thread, does not rely on timeouts, and finds deadlocks
ning of thecf or iteration, thereby achieving greater concurrency. as soon as it is safe to determine the condition. Furthermore, this
To further increase concurrency, our algorithm distinguishes be- algorithm is implemented by the compiler and runtime, without any
tween read and write locks. Readers can be concurrent with oneprogrammer intervention.
another, while a writer requires exclusive access. The implementa-  We require every thread to record its state during execution,
tion acquires locks at the granularity of a nodecut. This allows the which is eitherexecut i ng, bl ocked, orj oi ned. We define af or
locks to be fetched along with the associated variables before thecoordinator to beexecut i ng if at least one of the coordinator’s
nodecut’s execution, decreasing messaging costs. spawned threads isxecuting, bl ocked if at least one of the

Our algorithm acquires locks in a hierarchical manner. Each coordinator’s threads isl ocked and none arexecuting, and
cfor coordinator keeps track of which locks it holds, the type of | oined if all of the coordinator’s threads afeoi ned. A thread
each lock (read or write), which of its spawned threads are currently can easily update its state appropriately as its locks are requested
using each lock, and which of its threads are currently blocked and released during the locking algorithm described above, in the
waiting for each lock. When a nodecut requires a particular lock, it process also causing the thread to recursively update the state of
asks the coordinator of its innermost enclosafigr for the lock. its cf or coordinator. The program is deadlocked if and only if the
If the coordinator has the lock, it either provides the lock or blocks top-levelcf or coordinator ever has its state sebtmcked.
the thread, depending on the lock’s current status, and updates the  Once a deadlock has been detected, we use a simple recovery
lock information it maintains appropriately. If the coordinator does algorithm. Starting from the top-level or coordinator, we walk
not have the lock, it recursively requests the lock fraecf or down the unique path to the highest thread in the treg of co-
coordinator, thereby handling arbitrarily nesteftbr s. Once the ordinators that has at least two blocked child threads. We then re-
top-levelcfor coordinator has been reached, it acquires the lock |ease all locks held by these blocked threads and re-execute them
from the variable’s owner and grants the lock to the requesting in some sequential order. This simple approach guarantees that we
thread (who will then grant the lock fies requesting thread, and  will not encounter another deadlock after restart. To support re-
so on down to the original requester). Once a thread has obtainedexecution, each thread records the initial values of all variables to
the lock on a variable, it fetches the actual value of the variable which it writes, so that the variables previously updated at their
directly from the owner. When a spawned thread joins, it returns owners can be rolled back appropriately during deadlock recov-
its locks to itscfor coordinator, who may therefore be able to ery. We assume that the iterations are idempotent, so there are no
unblock threads waiting for these locks. Also, if any of the locks harmful side-effects of re-execution. This is true in many sensor
owned by the joining thread were write locks, before releasing the networks programs, which primarily involve sensing and actuation
locks it writes back the current value of the variable at the owner. as side effects.
It is possible to argue that this locking scheme always results in
a serializable execution of& or, but we omit the details due to .
space constraints. 4. Evaluation

Let us revisit the street parking example in Figllre 1. For each We have implemented tifeiades compiler and runtime described
cfor iteration, thePleiades runtime at the coordinator sends a in Section[B. In this section, we describe an evaluation of this
message containing tfier k command to each of the remote nodes implementation for various applications, wigeiades running on
selected for execution. Each node initially acquires a read and write TelosB Tmote Sky motes. We first discuss the performance of a
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Figure 5. PEG application error.

Pleiades application relative to a nesC implementation of that same
application. Then, we quantify the performanc®fades support

for serializability and nodecut migration.

Pleiades and nesC Comparison.We compare @leiades imple-
mentation of éPursuit-Evasion Game (PEG) against a hand-coded
node-level nesC implementation of the same application written by

others [[7] on a 40 node mote testbed. PEGS [26] have been ex-

plored extensively in robotics research. In a PEG, multiple robots
(the pursuers) collectively determine the location of one or more
evaders using the sensor network, and try to corral them.

The mote implementation of this game consists of three compo-

nents: a leader election module performs data fusion to determine
the centroid of all sensors that detect an evader; a landmark rout-

ing module routes leader reports to a landmark node; in turn, the
landmark routes reports to pursuers. Hieiades version of PEG

Figure 6. Street parking latency.
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Figure 7. Street parking message cost.

implements the leader election component of PEG, and leverages

the routing provided by th@leiades runtime to route the leader
reports directly to the pursuer. Itis less than a tenth of the nesC im-
plementation in terms of lines of code (63 lines as opposed to 780).
An important feature of this application is that it requires no serial-
izability semantics for the core leader election module; in fact, the
data we present below were obtained using a versidriedides

that did not support serializability. We also implemented PEG on
Pleiades with full serializability support for leader election, and
found that it does not incur additional overhead due to locking, be-

Serializability Evaluation. We ran the street-parking application

of Figure[d on a 10-node chain mote topology. This topology is an
extreme configuration, and thus stresses our serializability imple-
mentation, because the efficiency of packet delivery in a chain of
wireless nodes drops dramatically with the length of the chain. In
our experiments, 10 requests for free spots arrive sequentially at the
node in the center of the chain. To illustrate the powe?lefades’s
serializability guarantees, and to understand its performance, we

cause leader election needs only read locks, which are acquiredran four different versions of the applicatidBP-NL, in which we

once at the beginning, and retained until the end.

Figurd® depicts the main application-perceived measure of per-
formance, therror in position estimate on a topological (reduced)
map of the environmerit [IL6]. This figure is highly encouraging; the
Pleiades program exhibits comparable error to a hand-crafted nesC
program. The frequency of 2- and 3-hop errors is slightly higher
for Pleiades-PEG than for mote-PEG. On the other haPidjades-

PEG does not incur instances of 5-hop error that mote-PEG does.

configured thePleiades compiler and runtime to disable locking;
SP, which uses the completeleiades compiler and runtime for
locking, deadlock detection and recove8PID-NR, in which we
induced a deadlock into the application and configuredPtbiades
runtime to disable deadlock recovery; a8®ID, which uses the
completePleiades implementation with the deadlock-induced ap-
plication. To improve performance, we implemented message ag-
gregation for lock requests and forwarded locks across consecutiv

We also measured the latency between when a mote detectsnodecuts.
an evader and when the corresponding leader report reaches the As expectedSPandSPID execute correctly, assigning exactly

pursuer. Mote-PEG has noticeably lower latency tiRéiades-
PEG, but for most nodes (about 80%), this latency difference is
within a factor of two. This is because our implementation of
Pleiades is unoptimized for handlingf or forks and joins, and

one spot to each reque8PID-NR fails to allocate a spot to all
but the first request; in the absence of recovery code, the program
deadlocks after the first request. FinalBR-NL violates the cor-
rectness requirements of the application, correctly satisfying the

because our nodecut placement implementation relies on relativelyfirst request, but assigning two free spots in each direction of the

static hop count information. There is scope for improving both
significantly.

center node for the next four requests; consequently, it also fails to
satisfy the last four requests.

The average network overhead for mote-PEG is 193 messages Figure[® plots the time taken to assign a spot to the request, and

per minute, while forPleiades-PEG is 243. The minimum and
maximum network overhead is 137 and 253 for mote-PEG and 146
and 341 forPleiades-PEG. While these results merit further study,
they suggest thaleiades performance can be comparable to that
of node-level programming.

FigurelT plots the total number of bytes transmitted over the net-
work for each request. The same qualitative observations may be
drawn from both graphsSP and SPID message cost and latency
increase since successive requests have to search farther out into
the network to find a free spot. However, for the initial requests,



the overhead ofSP is comparable to that aBP-NL. Moreover, effect-free, it does not support the ability to update node-local state.
SPID message cost and latency are only moderately higher thanFor example, the car parking application would be much harder to
SP. The difference is attributable to the sequential execution of the Write in Regiment. o
cfor threads during deadlock recovery, with rollback overhead be-  TinyDB [1€] provides a declarative interface for centrally ma-
ing negligible. The periodic spikes in both plots arise because, for nipulating the data in a sensor network. This interface makes cer-
even-numbered requests, there are two free spots at the same digain applications reliable and efficient but it is not Turing-complete.
tance away from the requester that contend to satisfy the requestBecause TinyDB lacks support for arbitrary computation at nodes,
These two free spots also cause a deadlock in the caSe|af. it cannot be easily used to implement the kinds of applications we
Finally, the latency and overhead 8P-NL flatten out for later re-  support, like car parking. Research on Abstract Regioris [29] pro-
quests because they each incur the same cost: they search the eiides local-neighborhood abstractions for simplifying node-level
tire network for a free spot and fail, because spots were incorrectly Programming. This work is focused on programmability and effi-
over-allocated during earlier requests. ciency and does not provide support for consistency or reliability.
Thus, ourPleiades implementation correctly ensures serializ- Concurrent and Distributed Systems.Argus [17] is a distributed
ability and incurs moderate overhead for deadlock detection and Programming language for constructing reliable distributed pro-
recovery. The absolute overhead numbers imply that even for the grams. Argus allows the programmer to define concurrent objects
request which encounters the highest overhead, the average band@nd guarantees their atomicity and recovery through a nested trans-
width of a node used byleiades is around 250bps, with the max-  actions facility, but makes the programmer responsible for en-
imum being 1kbps at the node where the requests come in. This issuring serializability across atomic objects and for handling any
quite reasonable, considering that the maximum data rate for theapplication-level deadlocks. Recently, composable Software Trans-
TelosB motes is 250kbps. actional Memory (STM)[[10] has been proposed as an abstrac-
The absolute latency seems modestly high compared to thetion for reliable and efficient concurrent programming. Also, Ato-
expected response time for human interactivity. For example, the mos [2] is a new programming language with support for implicit
last request takes almost a minute and a half to satisfy. This is transactions and strong atomicity features. _
an artifact of the end-to-end reliable transport layer #iaiades ~ Ourcfor construct, with its serializability semantics and nest-
currently uses, which waits for 2 seconds, before trying to resend aing ability, is designed in a similar spirit—a concurrency prim-
packet that has not been acknowledged as received. We believe thaltive with simplicity, efficiency, reliability, and composability as
the overall latency can be significantly reduced by optimizing the goals. Unlike these systems, howeveleiades derives concur-

transport layer. rency from a set of loosely coupled and distributed, resource con-
The Benefits of Migration. Finally, we briefly report onasmallex- ~ strained nodes. Therefore, tiéeiades implementation ofcf or
periment on a 5-node chain that quantifies the benefiteséides’s emphasizes message and memory efficiency over throughput or la-

control flow migration. In this application, a node accesses node- tency. For the same reason, it uses a simple distributed locking al-
local nodesets from other nodes more than a hop away, so thatgorithm for serializability and a novel low-state algorithm for dis-
application-level network information can be gathered. Without mi- tributed deadlock detection and recove?igiades’ cf or s are also
gration, the total message cost is 780 bytes, while, with migration, Similar to atomic sections in Autolocker [20] in that both imple-
itis 120 bytes. Thus, we see that, even for small topologies, control mentations use strict two-phase locking. But Autolocker guaran-

flow migration can provide significant benefits. tees the absence of deadlocks through pessimistic locking, while
Pleiades uses an optimistic locking model in which locks are ac-
5. Related Work quired or upgraded as needed, and any deadlocks are detected and

recovered by the runtime.

Pleiades is related to many programming concepts developed in  Approaches to automatic generation of distributed programs
parallel and distributed computing. We classify related work into have also been explored. For example, Colgn [12] is a system
three broad categories. They are embedded and sensor systems lafor automatically partitioning coarse-grained components. Magne-
guages, concurrent and distributed systems languages, and paralleOs [18] also has support for partitioning a program written to a sin-
programming languages. gle system image abstraction. A program transformation approach
Embedded and Sensor Networks LanguageSeveral researchers  for generating multi-tier applications from sequential programs is
have explored programming languages for expressing the globaldescribed in[[22]. All these systems are primarily meant for par-
behavior of applications running on a network of less-constrained titioning and distribution of programs into coarse-grained compo-
32-bit embedded devices (e.g., iPAQB)eiades’s programming nents, that can then be run concurrently on multiple ncelegdes
model borrows from our earlier work on Kairds [8], an extension differs from these systems in generating nesC programs with fine-
to Python that also provides support for iterating over nodes and grained nodecuts and supporting lightweight control flow migration
accessing node-local state. However, Kairos does not support au-gcross such nodecuts.
tomatic code migration or serializability. Kairos provides support Parallel Processing Languageleiades differs from prior paral-
for application-specific recovery mechanisiids [9], whitthiades lel and concurrent programming languages such as Lidda [6] and
lacks. SpatialViews([25] is an extension to Java that supports an Split-C [3] by obviating the need for explicit locking and synchro-
expressive abstraction for defining and iterating over a virtual net- nization codePleiades also differs from automatic parallelization
work. In SpatialViews, control flow migrates to nodes that meet |anguages such as High Performance Fortfah [14] by equipping
the application requirements. To avoid concurrency errors, Spa-the compiler and runtime with serializability facilities. This is be-
tialViews restricts the programming model within iterators. cause parallel programming languages focus on data parallelism

Regiment[[24] is a functional programming language for cen- on mostly symmetric processors, leaving to the programmer the
trally programming sensor networks that models all sensor data responsibility of ensuring deadlock and livelock freedom at the ap-
generated within a programmer-specified region as a data streamplication level. On the other han@|eiades offers task-level par-
Regiment is a purely functional language, so the compiler can po- allelism, where data sharing among sensor nodes is common, and
tentially optimize program execution extensively according to the where it is desirable to offload the correct implementation of con-
network topology. On the other hand, since the language is side- currency to the compiler and runtime.



6. Conclusions and Future Work The nesC language: A holistic approach to networked embesiged
tems. InPLDI 2003.

Pleiades enables a sensor network programmer to implement an [6] D. Gelernter and N. Carriero. Coordination languaged teir sig-

application as a central program that has access to the entire net- nificance. Commun. ACM. 1992

work. This critical change of perspective simplifies the task of pro- [7] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, Viira
gramming sensor network applications on motes and can still pro- D. Estrin, R. Govindan, and E. Kohler. The TENET architeetior
vide application performance comparable to hand-coded versions. tiered sensor networks. BenSys 2006.
Pleiades employs a novel program analysis for partitioning cen-  [g] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming
tral programs into node-level programs and for migrating control wireless sensor networks using Kairos.J80OSS 2005.
flow across the node®leiades also provides a simple construct [9] R. Gummadi, N. Kothari, T. Millstein, and R. Govindan. Dagitive
that allows a programmer to express concurrency. This construct failure recovery for sensor networks. ADSD 2007.
uses distributed locking along with simple deadlock detection and [10] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihyongposable
recovery to ensure serializability. Together, these features ensure ~ memory transactions. IRPOPP 2005. ,
that Pleiades programs are understandable, efficient, and reliable. [11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and Rister.
Our implementation of these features runs realistic applications on ~ System architecture directions for networked sens8GOPS Oper.
memory-limited motes. yst. Rew., 2000. ) o .
While our currenPleiades implementation is robust to one as- [12] t(i;dn(i:ri Hsur;tt:rgd I'\rgs"‘jlsl%%té' The Coign automatic distrilalipearti-
pect of network dynamics (packet loss), the failure affar co- gsy ' .

di licati fail v imol [13] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy releasssistency
ordinator can cause an application to fail. We are currently imple- for software distributed shared memory.|BCA 1992, 1992.

menting support for handling node dynamics S,UCh as crashes and[14] C. Koelbel. An overview of High Performance Fortra8lGPLAN
additions through a simple retry-based mechanism that extends the'  ortran Forum, 11(4), 1992.

reliable routing and transport mechanisms already present in the[1s] | rishnamurthy, R. Adler, P. Buonadonna, J. ChhabraFinigan,

runtime. The basic idea is that node failures trigger an undo mech- N. Kushalnagar, L. Nachman, and M. Yarvis. Design and deplogme
anism similar to that already used for deadlock recovery, which of industrial sensor networks: Experiences from a semicctodplant
allows the initiator of the computation to retry. This approach natu- and the north sea. 18nSys 2005.

rally fits the semantics of thef or construct and complements our  [16] B. J. Kuipers and Y.-T. Byun. A Robust Qualitative Methor Spatial
programmability, efficiency and reliability contributions. Learning in Unknown Environments. WAAI 1988.

In future work, we intend to optimize the message and latency [17] B. Liskov. Distributed programming in Argu€ommun. ACM, 31(3),
costs of our implementation by exploring more efficient message 1988.
batching alternatives. We also plan to support various relaxed con-[18] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer. [gsand
sistency models as alternatives to serializability. In addition, we |mp|em|(ent?t||\5|>nb9faszlggsle system image operating system fboad
would like to allow the programmer to be able to easily trade off 19 gemvoéds' nMOJ'?S Ki 'J M. Hellerstei dW. Hofibe desi
quality of results for time of distributed execution. Finally, we plan [19] S. Madden, M. J. Frankiin, J. M. Hellerstein, and W. Hoige design

. g . of an acquisitional query processor for sensor networksSl GBMOD
to examine approaches to specifying sophisticated power manage- 5553

ment policies irPleiades. [20] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolockgynchro-
nization inference for atomic sections. POPL 2006.
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