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Abstract
It is currently difficult to build practical and reliable programming
systems out of distributed and resource-constrained sensor devices.
The state of the art in today’s sensornet programming is centered
around a component-based language called nesC. nesC is anode-
level language—a program is written for an individual node in the
network—and nesC programs use the services of an operating sys-
tem called TinyOS. We are pursuing an approach to programming
sensor networks that significantly raises the level of abstraction
over this practice. The critical change is one of perspective: rather
than writing programs from the point of view of an individual node,
programmers implement acentral program that conceptually has
access to the entire network. This approach pushes to the compiler
the task of producing node-level programs that implement the de-
sired behavior.

We present thePleiades programming language, its compiler,
and its runtime. ThePleiades language extends the C language with
constructs that allow programmers to name and access node-local
state within the network and to specify simple forms of concur-
rent execution. The compiler and runtime system cooperate to im-
plementPleiades programs efficiently and reliably. First, the com-
piler employs a novel program analysis to translatePleiades pro-
grams into message-efficient units of work implemented in nesC.
ThePleiades runtime system orchestrates execution of these units,
using TinyOS services, across a network of sensor nodes. Sec-
ond, the compiler and runtime system employ novel locking, dead-
lock detection, and deadlock recovery algorithms that guarantee
serializability in the face of concurrent execution. We illustrate
the readability, reliability and efficiency benefits of thePleiades
language through detailed experiments, and demonstrate that the
Pleiades implementation of a realistic application performs similar
to a hand-coded nesC version that contains more than ten times as
much code.
Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed programming;
D.3.2 [Programming Languages]: Language Classification—Specialized
application languages
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1. Introduction
Wireless sensor networks consist of a system of distributed sen-
sors embedded in the physical world. They are increasingly used
in scientific and commercial applications [15, 28]. However, con-
structing practical and reliable wirelessly-networked systems out of
them is still a significant challenge. This is because the programmer
must cope with severe resource, bandwidth, and power constraints
on the sensor nodes as well as the challenges of distributed sys-
tems, such as the need to maintain consistency and synchronization
among numerous, asynchronous loosely coupled nodes.

Current practice in sensor network programming uses a a highly
concurrent dialect of C called nesC [5], which is anode-level lan-
guage — a nesC program is written for an individual node in the
network. nesC statically detects potential race conditions and op-
timizes hardware resources using whole-program analysis. nesC
programs use the services of the TinyOS operating system [11],
which provides basic runtime support for statically linked pro-
grams. TinyOS exposes an event-driven execution and scheduling
model and provides a library of reusable low-level components
that encapsulate widely used functionality, such as timers and ra-
dios. TinyOS was designed for efficient execution on low-power,
limited-memory sensor nodes calledmotes.

nesC and TinyOS provide abstractions and libraries that sim-
plify node-level sensor-network application programming, but en-
suring the efficiency and reliability of sensor network applications
is still tedious and error prone (Section 2). For example, the pro-
grammer must manually decompose a high-level distributed algo-
rithm into programs for each individual sensor node, must ensure
that these programs efficiently communicate with one another, must
implement any necessary data consistency and control-flow syn-
chronization protocols among these node-level programs, and must
explicitly manage resources at each node.

We are pursuing an alternative approach to programming sensor
networks that significantly raises the level of abstraction over cur-
rent practice. The critical change is one of perspective: rather than
writing programs from the point of view of an individual node in
the network, programmers implement acentral program that con-
ceptually has access to the entire network. This change allows a
programmer to focus attention on the higher-level algorithmics of
an application, and the compiler automatically generates the node-
level programs that properly and efficiently implement the appli-
cation on the network. In the literature, this style of programming
sensor networks is known asmacroprogramming [29].



We have instantiated our macroprogramming approach in the
context of a modest extension to C calledPleiades, which aug-
ments C with constructs for addressing the nodes in a network and
accessing local state from individual nodes. These features allow
programmers to naturally express the global intent of their sensor-
network programs without worrying about the low-level details of
inter-node communication and node-level resource management.
By default, aPleiades program is defined to have a sequential
thread of control, which provides a simple semantics for program-
mers to understand and reason about. However,Pleiades includes
a novel language construct for parallel iteration calledcfor, which
can be used, for example, to iterate concurrently over all the nodes
in the network or all one-hop neighbors of a particular node.

ThePleiades compiler translatesPleiades programs into node-
level nesC programs that can be directly linked with standard
TinyOS components and thePleiades runtime system and exe-
cuted over a network of sensor motes. The key technical challenge
for Pleiades is the need to automatically implement high-level cen-
tralized programs in an efficient and reliable manner on the nodes
in the network. ThePleiades compiler and runtime system coop-
erate to meet this challenge in a practical manner (Section 3). This
paper makes the following contributions:

• Automatic program partitioning and migration for minimiz-
ing energy consumption.Energy efficiency is of primary con-
cern for sensor nodes because they are typically battery-powered.
Wireless communication consumes significant battery energy,
and so it is critical to minimize communication costs among
nodes.Pleiades uses a novel combination of static and dynamic
information in order to determine at which node to execute each
statement of aPleiades program. A compile-time analysis first
partitions a program’s statements intonodecuts, each represent-
ing a unit of work to be executed on a single node. The runtime
system then uses knowledge of the actual nodes involved in a
nodecut’s computation to determine at which node it should be
executed in order to minimize the communication overhead.

• An easy-to-use and reliable concurrency primitive.Concur-
rent execution is a natural component of sensor network applica-
tions, since each sensor node can execute code in parallel. How-
ever, with concurrency comes the potential for subtle errors in
synchronization that can affect application reliability. To sup-
port concurrency while ensuring reliability, thePleiades runtime
system guaranteesserializability for eachcfor: the effect of a
cfor loop always corresponds to some sequential execution of
the loop. To achieve this semantics, the runtime system automat-
ically synchronizes access to variables amongcfor iterations via
locks, alleviating the programmer of this burden. Locking has the
potential to cause deadlocks, so the compiler and runtime system
also support a novel distributed deadlock detection and recovery
algorithm forcfors.

• A mote-based implementation and its evaluation.We have
implementedPleiades on the widely used, but highly memory-
constrained, mote platform. The motes we use have 10kB RAM
for program variables and 48kB ROM for compiled code. Our
implementation generates event-driven node-level nesC code that
is conceptually similar to what a programmer would manually
write today. We evaluate three applications belonging to three
different classes (Section 4). We first compare the performance
of a sophisticated pursuit-evasion game macroprogram with that
of a hand-coded nesC version written by others [7]. We find that
the Pleiades program is significantly more compact (the source
code size less than 10% as large), well-structured, and easy to
understand. At the same time, thePleiades implementation has
comparable performance with the native nesC implementation.
We then evaluate a car parking application that requires a strict

notion of consistency and show that thePleiades implementation
of the concurrent execution is reliable. We finally demonstrate
the utility of control flow migration within a simple network
information gathering example.

Researchers have previously explored abstractions for program-
ming sensor networks in the aggregate [8, 25, 29], as well as
intermediate program representations to support compilation of
such programs [23]. However, to our knowledge, a self-contained
macroprogramming system for motes—one that generates the com-
plete code necessary for stand-alone execution—has not previously
been explored or reported on.Pleiades is also related to research
on parallel and distributed systems. Unlike traditional parallel sys-
tems and research on automatic parallelization, we are primar-
ily interested in achieving high task-level parallelism rather than
data parallelism, given the loosely coupled and asynchronous na-
ture of sensor networks. Further, we target concurrency support
toward minimizing energy consumption rather than latency, since
sensor networks are primarily power constrained. Unlike traditional
distributed systems,Pleiades features a centralized programming
model and pushes the burden of concurrency control and synchro-
nization to the compiler and runtime. A more detailed comparison
with related work is presented in Section 5.

2. ThePleiades Language
2.1 Design Rationale

Pleiades is designed to provide a simple programming model that
addresses the challenges and requirements of sensor network pro-
gramming.Pleiades’ sequential semantics makes programs easy to
understand and is natural when programming sensor networks in a
centralized fashion. Concurrency is introduced in a simple manner
appropriate to the domain, via thecfor construct for node itera-
tion. At the same time, the sequential semantics is still appropriate
for the purpose of programmer understanding, becausePleiades
ensures serializability ofcfors. This strong form of consistency
and reliability is important for a growing class of sensor network
applications, like car parking and the part of an application respon-
sible for building a routing tree across the nodes. For these kinds
of applications, we argue thatPleiades’s sequential semantics is the
right one. We have also usedPleiades for applications such as rout-
ing, localization, time synchronization and data collection, which
require consistency for at least some program variables. To our
knowledge, no other macroprogramming system guarantees even
weak forms of consistency.

While Pleiades provides a sequential semantics, it nonetheless
efficiently and naturally supports event-driven execution.Pleiades
has special language support for sensors and timers that provides
a synchronous abstraction for event-driven execution. The syn-
chronous semantics is easy for programmers to understand and
fits well with the sequential nature of aPleiades program. Under
the covers, the language constructs are compiled to efficient event-
driven nesC code.

2.2 Parking Cars with Pleiades

We illustrate the language features ofPleiades and the benefits
they provide over node-level nesC programs through a small but
realistic example application. It involves low cost wireless sensors
that are deployed on streets in a city to help drivers find a free space.
(According to recent surveys [27], searching for a free parking
spot already accounts for up to 45% of vehicular traffic in some
metropolitan areas.) Each space on the street has an associated
sensor node that maintains the space’s status (free or occupied).
The goal is to identify a sensor node with a free spot that is as
close to the desired destination of the driver as possible. For ease
of explanation, we define distance by hop count in the network, but



1: #include "pleiades.h"
2: boolean nodelocal isfree=TRUE;
3: nodeset nodelocal neighbors;
4: node nodelocal neighborIter;

5: void reserve(pos dst) {
6: boolean reserved=FALSE;
7: node nodeIter,reservedNode=NULL;
8: node n=closest_node(dst);
9: nodeset loose nToExamine=add_node(n, empty_nodeset());
10: nodeset loose nExamined=empty_nodeset();

11: if(isfree@n) {
12: reserved=TRUE; reservedNode=n;
13: isfree@n=FALSE;
14: return;
15: }

16: while(!reserved && !empty(nToExamine)){
17: cfor(nodeIter=get_first(nToExamine);nodeIter!=NULL;

nodeIter = get_next(nToExamine)){
18: neighbors@nodeIter=get_neighbors(nodeIter);
19: for(neighborIter@nodeIter=get_first(neighbors@nodeIter);

neighborIter@nodeIter!=NULL;
neighborIter@nodeIter=get_next(neighbors@nodeIter)){

20: if(!member(neighborIter@nodeIter,nExamined))
21: add_node(neighborIter@nodeIter,nToExamine);
22: }
23: if(isfree@nodeIter){
24: if(!reserved){
25: reserved=TRUE; reservedNode=nodeIter;
26: isfree@nodeIter=FALSE;
27: break;
28: }
29: }
30: remove_node(nodeIter,nToExamine);
31: add_node(nodeIter,nExamined);
32: }
33: }
34:}

Figure 1. A street-parking application inPleiades.

it is straightforward to base this on physical distance. We consider
an implementation of this application inPleiades as well as two
node-level versions written in nesC [5]. We show that thePleiades
version is simultaneously readable, reliable, and efficient. Each of
the two nesC versions is more complex and provides reliability or
efficiency, but not both simultaneously.

Figure 1 shows the key procedure that makes up a version of the
street-parking application written inPleiades. When a car arrives
near the deployed area, a space near the driver’s indicated desti-
nation is found and reserved for it by invokingreserve, passing
the car’s desired location. Thereserve procedure finds the closest
sensor node to the desired destination and checks if its space is free.
If so, the space is reserved for the car. If not, the node’s neighbors
are recursively and concurrently checked.

The code in Figure 1 makes critical use ofPleiades’s centralized
view of a sensor network. We describe the associated language
constructs in turn.

Node Naming.Pleiades provides a set of language constructs
that allow programmers to easily access nodes and node-local state
in a high-level, centralized, and topology-independent manner. The
node type provides an abstraction of a single network node, and
thenodeset type provides an iterator abstraction for an unordered
collection of nodes. For example, variablen (line 8) in reserve
holds the node that is closest to the desired position (the code for

the closest node function is not shown), andnToExamine (line
9) maintains the set of nodes that should be checked to see if the
associated space is free.

The set of currently available nodes in the network is returned
by invoking get network nodes(), which returns anodeset.
Pleiades also provides aget neighbors(n) procedure that re-
turns anodeset containingn’s current one-hop radio neighbors.
In Figure 1, thereserve procedure usesget neighbors (line 18)
to add an examined node’s neighbors to thenToExamine set. The
Pleiades runtime implementsget neighbors by maintaining a set
of sensor nodes that are reachable through wireless broadcast.

Node-Local Variables. Pleiades extends standard C variable
naming to address node-local state. This facility allows program-
mers to naturally express distributed computations and eliminates
the need for programmers to manually implement inter-node data
access and communication. Node-local variables are declared as
ordinary C variables but include the attributenodelocal, as shown
for theisfree variable (line 2) in Figure 1. The attribute indicates
that there is one version of the variable per node in the network.

A node-local variable is addressed inside aPleiades program
using a new expressionvar@e, wherevar is anodelocal variable
and e is an expression of typenode. For example, thereserve
procedure uses this syntax to check if each node innToExamine
is free (line 23). An expression of the formvar@e can appear
anywhere that a C l-value can appear; in particular, a node-local
variable can be updated through assignment.

All variables not annotated asnodelocal are treated as ordi-
nary C variables, whose scope and lifetime respect C’s standard se-
mantics. InPleiades, we call thesecentral variables, to distinguish
them from node-local variables. In our example code,reserved is
a central variable (line 6), which is therefore shared across all nodes
in the network.

Concurrency. By default, aPleiades program has a sequential
execution semantics. However,Pleiades also provides a simple
form of programmer-directed concurrency. Thecfor loop is like
an ordinaryfor loop but allows for concurrent execution of the
loop’s iterations. Acfor loop can iterate over anynodeset, and
the loop body will be executed concurrently for each node in the
set. For example, thereserve procedure in Figure 1 concurrently
iterates over the nodes innToExamine (line 17), in order to check
if any of these nodes is free.

While concurrency is often essential to achieve good perfor-
mance, it can cause subtle errors that are difficult to understand
and debug. For example, a purely concurrent semantics of thecfor
in reserve can easily cause multiple free nodes to read a value
of false for thereserved flag. This will have the effect of mak-
ing each such node believe that it has been selected for the new
car and is therefore no longer free. To help programmers obtain the
benefits of concurrency while maintaining reliability, thePleiades
compiler and runtime system ensure that the execution of acfor
is alwaysserializable: the effect of acfor always corresponds to
some sequential execution of the loop. Inreserve, serializability
ensures that only one free node will reserve itself for the new car;
the other free nodes will see the updated value of thereserved
flag at that point. Section 3.2 explains our algorithm for ensuring
serializability forcfor loops.

Pleiades allowscfors to be arbitrarily nested. The serializabil-
ity semantics of a singlecfor is naturally extended for nested
cfors. Intuitively, the innercfor is serialized as part of the iter-
ation of the serialized outercfor. So, in Figure 1, the program-
mer could have replaced the simplefor in line 19 with acfor,
and the execution would be correct. It would also increase the
available concurrency because multiple threads from the nested
cfor iterations would be active at a node. However, in this case,
it would not be efficient to use acfor because the message and



latency overheads involved in starting and terminating the concur-
rent threads and remotely accessingnExamined andnToExamine
would offset the potential concurrency gain from executing on mul-
tiple neighboring nodes ofnodeIter. In general, a programmer
must weigh the benefits of fine-grained concurrency through nested
cfors against the start-up and finalization overheads of such con-
currency.

Loose Variables.While serializability provides strong guaran-
tees on the behavior ofcfor loops, sensor network applications
often have variables that do not need serializability semantics and
can obtain timeliness and message efficiency benefits by using a
looser consistency model. Examples include routing beacons that
are used to maintain trees for sensor data collection, and sensor val-
ues that need to be filtered or smoothed using samples from neigh-
boring nodes.Pleiades lets a programmer annotate such variables
asloose, in which case accesses to these variables are not synchro-
nized within acfor. The consistency model used for loose vari-
ables closely follows release consistency semantics [13]. Writes to
a loose variable can be re-ordered. The beginning of a newcfor
statement or the end of any activecfor statement act as synchro-
nization variables, ensuring that the current thread of control has
no more outstanding writes.

In Figure 1, variablesnToExamine andnExamined are anno-
tated asloose (lines 9 and 10) in order to gain additional con-
currency and avoid lock overhead on them. These annotations
are based on the two observations that it is safe to examine a
node innToExamine multiple times, and that only acfor itera-
tion onnodeIter can remove the candidate nodenodeIter from
nToExamine. Alternatively, the programmer can derive the same
concurrency in this case without usingloose by temporarily stor-
ing the set of nodes that would be added tonToExamine in line
21 and deferring theadd node operations on this set until after
statement 31. In general, the programmer can derive maximum
concurrency while ensuring serializability by organizing her code
so that writes on serialized variables happen toward the end of a
cfor.

By default, loose variables are still reliably accessed, but the
programmer can further annotate a loose variable to beunreliable,
so that the implementation can use the wireless broadcast facility.
In Section 4, we evaluate the street parking example with reliable
loose variables and a separate application that primarily uses unre-
liable loose variables.

Automatic Control Flow Migration. Ultimately a centralized
Pleiades program must be executed at the individual nodes of the
network. As described in Section 3, thePleiades implementation
automatically partitions aPleiades program into units of work to
be executed on individual nodes and determines the best node on
which to execute each unit of work in order to minimize communi-
cation costs. For example, the first five statements of the code (lines
6–10) execute at the node invokingreserve. The implementation
then migrates the execution of statements in lines 11–16 to noden.
This is because it is cheaper to simply transfer control ton than to
first readisfree@n and later write it back if necessary. Similarly,
each iteration of thecfor loop will execute at the node identified
by the current value ofnodeIter (line 17). While it does not hap-
pen in this example, the execution of a singlecfor iteration can
also successively migrate to other nodes.

2.3 Parking Cars with nesC

Pleiades provides several important advantages over the traditional
node-level programming for sensor networks in use today. To make
things concrete, we consider how the street-parking algorithm
would be implemented in nesC. We describe two different nesC
implementations: a centralized version that is relatively simple and
reliable but highly inefficient, and a more complex distributed ver-

sion that is efficient but unreliable. In contrast, thePleiades version
is both reliable and efficient.

2.3.1 A Centralized nesC Implementation

First, it is possible to implement a centralized version of the algo-
rithm in nesC, wherein most of the algorithm is executed on a single
node. The major advantage of this approach is its relative simplic-
ity for programmers. However, this version is extremely inefficient
in terms of both message cost and latency. Figure 2 shows the core
functions that comprise such a program. The overall logic is similar
to that of thePleiades version from Figure 1. However, program-
mers must explicitly manage the details of inter-node communica-
tion. Because nesC uses an asynchronous,split-phase approach to
such communication [5], the application’s logic must be partitioned
across multiple callback functions at remote read/write boundaries.

The control flow is as follows. A taskreserve (line 9) is
spawned on the node closest to the car, which, in turn, calls the
closest node function (line 10) in theTopology component (this
component is not shown). Since all tasks in nesC run to comple-
tion, and sinceTopology.closest node performs a split-phase
lookup operation for the desiredclosest node, the callback func-
tion found node is later invoked byTopology (line 12). The call-
back creates a new tasktransfer control (line 14), which ulti-
mately triggersdoReserve on theclosest node (line 21).

The rest of the algorithm then runs centrally on theclosest
node.doReserve, executing onclosest, either finds itself free
(line 22) or creates thenToExamine set with its current neighbor set
(line 26). Next, it concurrently and asynchronously readsisfrees
at nToExamine (line 27) usingaread of theRemoteRW component
(not shown). When the asynchronous read completes, it signals
aread done (line 29), andcontinue reserve is called (line 30).
Such reads are locally cached in theRemoteRW component, so that
continue reserve can synchronously read them in line 37. If no
node with a free spot is found (lines 37–41), more neighboring
nodes of the current nodes are searched using another asynchronous
read (line 42), which, ultimately callsbuild more nodes (line 31).

Since the code is executed on a single node, this approach
maintains a relatively straightforward structure, similar to that of
the Pleiades code. The main drawback of this approach to node-
level programming is inefficiency. Message cost is high because
isfree of every node is centrally fetched and checked from a
single node. In contrast, thePleiades version from Figure 1 uses
acfor to allow each node to locally process its own data, using the
code migration techniques described in Section 3. Thus, even for
small example topologies of two-hop radius, it can be shown that
the Pleiades version requires around half the messages required
by the nesC version; this message count forPleiades includes all
control overhead for code migration and for ensuring serializability
of cfors. The concurrentcfor iterations inPleiades also find a
free spot earlier than is possible in the nesC version. In the nesC
version,continue reserve in line 42 waits onRemoteRW.aread
for all remote neighbors innToExamine to be asynchronously read,
andbuild more nodes in line 51 similarly waits until all remote
isfrees innToExamine are read.

2.3.2 A Distributed nesC Implementation

The Pleiades version of car parking in Figure 1 does a breadth-
first search around the closest node, moving to the next depth in a
distributed fashion only if no free slot is found in the current one.
Unfortunately, a distributed implementation in nesC that provides
the same behavior as thePleiades version would be exceedingly
complex. Such an implementation would require the programmer
to manually implement many of the same concurrency control tech-
niques thatPleiades automatically implements forcfors, as dis-
cussed in Section 3.2. For example, to ensure that exactly one free



1: module ReserveM {
2: uses { ... }
3: provides { ... }
4: } implementation {
5: nodeset nToExamine, nExamined;
6: boolean reserved, isfree, is_remote_free;
7: node closest, reserved_node, req, iter, iter1;
8: pos dst;

9: task void reserve() {
10: call Topology.closest_node(dst);
11: }
12: event void Topology.found_node(node n){
13: closest = n; req=TOS_LOCAL_ADDRESS;
14: post transfer_control();
15: }
16: task void transfer_control() {
17: uint8_t i;
18: //Trigger remote doReserve() at ‘‘closest’’ node
19: //Also, send ‘‘req’’ and ‘‘closest’’ node values
20: }
21: task void doReserve() {
22: if (isfree) {
23: reserved_node=TOS_LOCAL_ADDRESS;
24: call MsgInt.send_reply(req,FOUND);}
25: else {
26: nToExamine=call Topology.get_neighbors();
27: call RemoteRW.aread(nToExamine,ISFREE); }
28: }
29: event void RemoteRW.aread_done(done_t done) {
30: if (done==ISFREE) continue_reserve();
31: else if (done==NEIGHBORS) build_more_nodes();
32: }
33: void continue_reserve() {
34: for(iter=get_first(nToExamine);iter!=NULL;

iter=get_next(nToExamine)) {
35: remove_node(iter, nToExamine);
36: add_node(iter, nExamined);
37: if(is_remote_free=call RemoteRW.read(iter,ISFREE)){
38: reserved_node=iter; reserved=TRUE;
39: call RemoteRW.awrite(iter,ISFREE,0); }
40: }
41: if (!reserved)
42: call RemoteRW.aread(nToExamine,NEIGHBORS);
43: }
44: void build_more_nodes(){
45: nodeset nl;
46: for(iter=get_first(nToExamine);iter!=NULL;

iter=get_next(nToExamine)) {
47: nl=(call RemoteRW.read(iter,NEIGHBORS));
48: for(iter1=get_first(nl); iter1!=NULL;

iter1=get_next(nl))
49: if(!member(iter1,nExamined))
50: add_node(iter1,nToExamine); }
51: call RemoteRW.aread(nToExamine,ISFREE);
52: }
53:}

Figure 2. Reliable but inefficient street-parking in nesC.

1: module ReserveM {
2: uses { ... }
3: provides { ... }
4: } implementation {
5: boolean isfree, seen, reserved;
6: pos dst;
7: node start_node[], req, orig, reserved_node;
8: uint8_t cnt_start_node, hopcount;

9: task void reserve() {
10: call Topology.closest_node(dst);
11:}

12:event void Topology.found_node(node n){
13: orig=TOS_LOCAL_ADDRESS;
14: start_node[0]=n, req=n, hopcount=HOP_MAX;
15: cnt_start_node=1;
16: post transfer_control();
17:}

18:task void transfer_control() {
19: uint8_t i;
20: for (i=0;i<cnt_start_node;i++) {
21: //Trigger remote doReserve() at every start_node[i]
22: //Also, send each node our req, orig, hopcount values
23: }
24:}

25:task void doReserve(){
26: if(!seen) {seen=TRUE;}
27: if (isfree && !seen){
28: reserved_node=TOS_LOCAL_ADDRESS;
29: isfree=FALSE;
30: call MsgInt.send_reply(req,FOUND); }
31: else flood_neighbors();
32:}

33:void flood_neighbors() {
34: nodeset nl=Topology.get_neighbors();
35: node iter;
36: hopcount--;
37: if (hopcount>0) {
38: cnt_start_node=0;
39: for (iter=get_first(nl);iter!=NULL;iter=get_next(nl))
40: start_node[cnt_start_node++]=iter;
41: post transfer_control(); }
42:}

43:event void MsgInt.receive_reply(node rep,msg_t msg){
44: if (msg==FOUND) {
45: if (!reserved){
46: reserved_node=rep;
47: call MsgInt.send_reply(rep,ACCEPT);
48: call MsgInt.send_reply(orig,FOUND); }
49: else call MsgInt.send_reply(rep,REJECT); }
50: else if(msg==REJECT){isfree=TRUE;}
51:}
52:} //end implementation

Figure 3. Efficient but unreliable street-parking in nesC.



space is reserved for a car, the programmer would have to imple-
ment a form of distributed locking for conceptually central vari-
ables. In general the use of locking would then require manual sup-
port for distributed deadlock detection or avoidance. Similarly, to
ensure that the closest free space is always found, the programmer
would have to manually synchronize execution across the nodes in
the network, to ensure that a depthd is completely explored before
moving on to depthd +1.

Therefore, in practice a distributed version in nesC would forgo
synchronization, as shown in Figure 3. Here we do a distributed
flooding-based search around the closest node, in order to find a
free spot. The control flow is as follows. Afterreserve is invoked
(line 9),doReserve is ultimately triggered, in a manner similar to
the previous version. The only difference here is thatdoReserve
may be active at multiple nodes that receive the flooding request
and may be activated multiple times by several neighbors (lines
39–41). Since a node must process a request exactly once even if its
doReserve is triggered multiple times by its neighbors,doReserve
uses a flagseen (line 26) to ignore all but the first request.

To limit the number of duplicate requests at a node, the code
also suppresses broadcasts to neighbors when thehopcount reaches
0 (line 37). This is an effective technique when the network diam-
eter is unknown and when we want to ensure the flooded requests
prefer shorter hops from the flooding initiator (nodereq in line
14). receive reply (line 43) is a callback that is invoked by the
local message interface componentMsgInt (not shown) whenever
a remote node sends a message. When a spot is found at a remote
node, it sendsFOUND to the flooding initiator (line 30), which re-
jects all but the first successfully replying node (lines 45–49). If a
remote node is rejected, it sets itself back to free (line 50).

As described earlier, thePleiades version performs a breadth-
first search on the topology, distributedly determining if there is a
free slot at depthd before moving on to depthd+1. By contrast, the
flooding approach starts up the free-slot determination concurrently
at all network nodes by flooding the transfer of control. Given
this distinction, two things follow. First, thePleiades approach is
always more message efficient, since it avoids multiple requests to
the same node. Second, the flooding approach has lower latency,
since it can find a spot more quickly when the free spot is far
away. The flooding approach is also much more efficient in terms of
both messaging costs and latency than the centralized nesC version
shown in Section 2.3.1.

Despite the latency advantage, the code in Figure 3 is signifi-
cantly less understandable and reliable than thePleiades version.
The programmer is responsible for explicitly managing the com-
munication among nodes. For efficiency, this requires maintaining
information about hop counts and other network details. It also re-
quires that conceptually “central” variables be packaged up and
passed among the nodes explicitly, taking care to maintain consis-
tency. For example, a special protocol is used inreceive reply
(lines 44–50) to ensure a consistent view of thereserved flag, in
order to avoid having multiple nodes be reserved for the same car.
Similarly, in transfer control (lines 21–22), a node explicitly
sends the values of the node originating the request and the node
closest to the destination that initiated the search. In thePleiades
version, the combination of central variables andcfors takes care
of these low-level details automatically. Finally, the flooding ver-
sion, unlike the other two versions, makes no guarantee that the
first node to reply is the topologically closest node. So, if we want
it to reliably return only a closest node, thereq node executing
MsgInt.receive reply (line 43) must wait for an indeterminable
amount of time before accepting a replying node, negating the la-
tency advantage.

2.4 Other Features ofPleiades

Pleiades includes other language constructs to support the imple-
mentation of common sensor network idioms, which we briefly de-
scribe.

Sensors and Timers.As mentioned earlier,Pleiades uses spe-
cial kinds of variables as an abstraction for sensors, which are crit-
ical components of sensor-network applications. Sensor readings
are asynchronous events, andPleiades provides a facility to syn-
chronously wait for such an event to occur. In particular,Pleiades’s
wait function takes a sensor variable and returns when the sensor
takes a reading. At that point, the associated variable contains the
most recent reading and the program can take appropriate action.
For example, this mechanism is used in order for the car-parking
application to wait for notification that a parked car has left its
spot, at which point the spot’s sensor sets its associatedisfree
variable defined in line 2 of Figure 1 toTRUE (this operation is not
shown), so that it can once again service remotereserve requests.
A similar technique is used to model timers, which fire at some
user-specified rate.

Modules.A Pleiades program consists of a number ofmodules,
which are executed concurrently. Each module encapsulates a log-
ically independent application-level computation, such as building
a shortest path tree rooted at a given node, computing an aggregate,
or routing application data to a given node. A module is a set of
functions that can invoke each other and define and use global and
local variables of both central andnodelocal type. Since modules
are meant to be independent tasks, we currently provide no syn-
chronization among modules.

3. Implementation
This section describes thePleiades compiler and runtime system.
The Pleiades compiler is built as an extension to the CIL infras-
tructure for C analysis and transformation [21]. Our compiler ac-
cepts aPleiades program as input and produces node-level nesC
code that can be linked with standard TinyOS components and the
Pleiades runtime system. ThePleiades runtime system is a col-
lection of TinyOS modules that orchestrates the execution of the
compiler-generated nesC code across the nodes in the network.

ThePleiades compiler and runtime cooperate to tackle two key
technical challenges. First, they must partition aPleiades program
into chunks that can be executed on individual nodes and determine
at which node to run each chunk, striving to minimize communi-
cation costs. Second, they must provide concurrent but serializable
execution ofcfors. We discuss each challenge in turn.

3.1 Program Partitioning and Migration

Partitioning. The Pleiades compiler performs a dataflow analy-
sis in order to partition aPleiades program into a set ofnodecuts.
Each nodecut is then converted into a nesC task [5], to be executed
by thePleiades runtime system on a single node in the network.
At one extreme, one could consider the entirePleiades program to
be a single nodecut and execute it at one node, fetching node-local
and central variables from other nodes as needed (moving the data
to the computation). The other extreme would be to consider each
instruction in thePleiades program as its own nodecut, executing
it on the node whose local variables are used in the computation
(moving the computation to the data). Both of these strategies lead
to generated code that has high messaging overhead and high la-
tency, in the first case due to the on-the-fly fetching of individual
variables, and in the second case due to the per-instruction migra-
tion of the thread of control.

We adopt a compilation strategy forPleiades that lies in be-
tween these two extremes, involving both control flow migration
and data movement. A nodecut can include any number of state-



ments, but it must have the property that just before it is to be ex-
ecuted, the runtime system can determine the location of all the
node-local variables needed for the nodecut’s execution. We there-
fore define a nodecut as a subgraph of a program’s control-flow
graph (CFG) such that for every expression of the formvar@e in
the subgraph, the l-values ine have no reaching definitions within
that subgraph.

Given this property, the runtime system can retrieve all the nec-
essary node-local and central variables concurrently, before begin-
ning execution of a nodecut, which improves the latency immensely
over the first strategy above. At the same time, because the runtime
system has information about the required node-local variables, it
can determine the best node (in terms of messaging costs) at which
to execute the nodecut, thereby obtaining the benefits of the sec-
ond strategy above without the latency and message costs of per-
statement migration.

Intuitively, the goal is to make each nodecut as large as possible,
in order to minimize the control and data costs associated with a mi-
gration. Since a nodecut runs to its completion without any further
communication, this approach would statically minimize the total
communication cost of a program. We make the goal of minimiz-
ing migrations precise by striving to minimize the total number of
edges in the program’s CFG that cross from one nodecut to another,
since each such edge represents a migration of the dynamic thread
of control from one sensor node to another. This optimization prob-
lem is exactly equivalent to the directed unweighted multi-cut prob-
lem, which is known to be NP-complete [1]. Therefore, instead of
finding the optimal partition of a CFG into nodecuts, thePleiades
compiler uses a heuristic algorithm that works well in practice, as
shown in Section 4.

The algorithm starts by assuming that all CFG nodes are in the
same nodecut and does a forward traversal through the CFG, creat-
ing new nodecuts along the way. For each CFG noden containing
an expression of the formvar@e, we find all reaching definitions of
the l-values ine and collect the subsetR of such definitions that oc-
cur within n’s nodecut. IfR is nonempty, we induce a new nodecut
by finding a CFG noded that dominates noden and post-dominates
all of the nodes inR. Noded then becomes the entry node of the
new nodecut. Any such noded can be used, but our implementation
uses simple heuristics that attempt to keep the bodies of condition-
als and loops in the same nodecut whenever possible. The imple-
mentation also uses heuristics to increase the potential for concur-
rency. For example, the body of acfor is always partitioned into
nodecuts that do not contain any statements from outside thecfor,
so that these nodecuts can be executed concurrently.

The five nodecuts computed by our algorithm for the street-
parking example in Figure 1 are shown in Figure 4. Nodecut 2
is induced due to the use ofisfree@n in line 11 of Figure 1,
sincen is defined in line 8. The transitions from nodecut 2 to 3
and nodecut 3 to 4 are induced to keep thecfor body separate
from statements outside the loop, as mentioned above. Further,
an extra nodecut is induced within thecfor body (nodecut 5) to
maximize read concurrency. The heuristic attempts to separate read
and written variables into different nodecuts so that the acquisition
of write locks, which is done before a nodecut starts execution, can
be delayed until the write locks are actually required.

In the current implementation we assume that aPleiades pro-
gram does not create aliases among node variables. Such aliasing
has not been necessary in any of our experiments with thePleiades
language so far. It is straightforward to augment our algorithm for
generating nodecuts to handle node aliasing by consulting a static
may-alias analysis.

Control Flow Migration. ThePleiades runtime system is respon-
sible for sequentially (ignoringcfor for the moment) executing
each nodecut produced by the compiler across the sensor network.
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if(nodeIter!=NULL)

if(neighborIter@nodeIter!=NULL)

reservedNode = nodeIter

isfree@nodeIter = false

    get_next(neighbors@nodeIter)
neighborIter@nodeIter =

if(!member(neighborIter@nodeIter,
nExamined))

remove_node(nodeIter,nToExamine)
add_node(nodeIter,nExamined)
nodeIter = get_next(nToExamine)

neighbors@nodeIter = get_neighbors(iter)

    get_first(neighbors@nodeIter)
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end
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reserved = true
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if(!reserved && !empty(nToExamine))
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add_node(neighborIter@nodeIter,nToExamine)

Figure 4. Nodecuts generated for the street-parking example.

When execution of a nodecutC completes at some noden, that
node’s runtime system determines an appropriate noden′ at which
to run the subsequent nodecutC′ and migrates the thread of con-
trol to n′. All of the Pleiades program’s central variables migrate
along with the thread of control, thereby making them available to
C′. Because of the special property of nodecuts, the runtime system
knows exactly which node-local variables are required byC′, so
these variables are also concurrently fetched ton′ before execution
of C′ is begun.

To determine where the next nodecut should be executed, the
runtime uses the overall migration cost as the metric. The runtime
knows the number of node-local variables needed from each node
for executing the next nodecut as well as the distances (the number
of radio hops) of these nodes relative to each other according to
the current topology. The runtime chooses the node that minimizes
the cost of transfers from within this set. For example, nodecut 2
in Figure 1 accesses the node-local variableisfree@n, as well as
two central variablesreserved andreservedNode. The cost of
running this nodecut at the node executing nodecut 1 is the cost of
fetching the value ofisfree from n at the beginning of nodecut
2 and writing backisfree if necessary. This cost is two reliable
messages across multiple radio hops. By contrast, if the runtime
at nodecut 1 hands off nodecut 2 to noden, the cost is that of
transferring the thread of control along with the central variables.
This is only one reliable message across the same number of hops.
So,Pleiades executes nodecut 2 atn.

Since the nodecuts along with the set of node-local variables
accessed in each nodecut are statically supplied by the compiler,
our migration approach thus exploits a novel combination of static
and dynamic information in order to optimize energy efficiency.
We note that this approach does not require every node to keep
a fully consistent topological map, but only the relative distances
of the nodes involved in the nodecut. In our current implementa-
tion, nodes use a statically configured topological map in order to
make the migration decision; we will explore lightweight, dynamic



approaches to determine approximate topological maps as part of
future work.

3.2 Serializable Execution ofcfors

To execute acfor loop, thePleiades runtime system forks a sepa-
rate thread for each iteration of the loop. We call the forking thread
thecfor coordinator. Program execution following thecfor only
continues once all the forked threads have joined. Each forked
thread is initially placed at the node representing the value of the
variable thecfor iterates over, and any subsequent nodecuts in the
thread are placed using the migration algorithm for nodecuts de-
scribed above. A forked thread may itself execute acfor state-
ment, in which case that thread becomes the coordinator for the
innercfor, forking threads and awaiting their join.

To provide reliability in the face of concurrency,Pleiades en-
sures serializability ofcfor loops. This allows programmers to cor-
rectly understand theirPleiades programs in terms of a sequential
execution semantics. ThePleiades compiler and runtime ensure
serializability by transparently locking variables accessed in each
cfor body. The use of locking has the potential to cause deadlocks,
so we also provide a novel distributed deadlock detection and re-
covery algorithm.

Distributed Locking. To ensure serializability, thePleiades im-
plementation protects each node-local and central variable accessed
within acfor iteration with its own lock. We employ a pessimistic
locking approach, since this consumes less memory than optimistic
approaches such as versioning. To ensure serializability, a lock
must be held until the end of the outermostcfor iteration being
executed; thus, the implementation uses strict two-phase locking.
However, locks are acquired on demand rather than at the begin-
ning of thecfor iteration, thereby achieving greater concurrency.
To further increase concurrency, our algorithm distinguishes be-
tween read and write locks. Readers can be concurrent with one
another, while a writer requires exclusive access. The implementa-
tion acquires locks at the granularity of a nodecut. This allows the
locks to be fetched along with the associated variables before the
nodecut’s execution, decreasing messaging costs.

Our algorithm acquires locks in a hierarchical manner. Each
cfor coordinator keeps track of which locks it holds, the type of
each lock (read or write), which of its spawned threads are currently
using each lock, and which of its threads are currently blocked
waiting for each lock. When a nodecut requires a particular lock, it
asks the coordinator of its innermost enclosingcfor for the lock.
If the coordinator has the lock, it either provides the lock or blocks
the thread, depending on the lock’s current status, and updates the
lock information it maintains appropriately. If the coordinator does
not have the lock, it recursively requests the lock fromits cfor
coordinator, thereby handling arbitrarily nestedcfors. Once the
top-levelcfor coordinator has been reached, it acquires the lock
from the variable’s owner and grants the lock to the requesting
thread (who will then grant the lock toits requesting thread, and
so on down to the original requester). Once a thread has obtained
the lock on a variable, it fetches the actual value of the variable
directly from the owner. When a spawned thread joins, it returns
its locks to itscfor coordinator, who may therefore be able to
unblock threads waiting for these locks. Also, if any of the locks
owned by the joining thread were write locks, before releasing the
locks it writes back the current value of the variable at the owner.
It is possible to argue that this locking scheme always results in
a serializable execution of acfor, but we omit the details due to
space constraints.

Let us revisit the street parking example in Figure 1. For each
cfor iteration, thePleiades runtime at the coordinator sends a
message containing thefork command to each of the remote nodes
selected for execution. Each node initially acquires a read and write

lock respectively on its own versions of the node-local variables
isfree andneighbors. isfree uses a read lock instead of a write
lock even though it can potentially be modified in line 26, because
using a read lock first and then upgrading it to a write lock if the
conditional in line 23 succeeds significantly enhances concurrency.
On receiving these locks, the threads fetch the variable values from
the owners and begin concurrent execution of the initial nodecut
of the cfor (nodecut 3 in Figure 4). Threads that run on nodes
with an occupied parking space fail theif condition in line 23,
release their locks, and join with thecfor coordinator. Threads on
nodes that have a free space contend for a write lock on central
variablesreserved and reservedNode and have to execute the
second nodecut of thecfor sequentially. The first thread to do so is
selected as the winner, and other nodes do not change theirisfree
status.

Distributed Deadlock Detection and Recovery. While the lock-
ing algorithm ensures serializability ofcfors, it can give rise to
deadlocks. One possibility would be to statically ensure the absence
of deadlocks, for example via a static or dynamic global ordering
on the locks. However, such an approach would be very conser-
vative in the face ofcfors containing multiple nodecuts, nested
and conditionalcfors, orcfors that contain updates to node vari-
ables, thereby overly restricting the amount of concurrency pos-
sible. Further, we expect deadlocks to be relatively infrequent.
ThereforePleiades instead implements a dynamic scheme for dis-
tributed deadlock detection and recovery. While such schemes can
be heavyweight and tricky in general [4], we exploit the fork-join
structure of acfor to arrive at a simple and efficient state-based
deadlock detection algorithm. Our algorithm requires only two bits
of state per thread, does not rely on timeouts, and finds deadlocks
as soon as it is safe to determine the condition. Furthermore, this
algorithm is implemented by the compiler and runtime, without any
programmer intervention.

We require every thread to record its state during execution,
which is eitherexecuting, blocked, orjoined. We define acfor
coordinator to beexecuting if at least one of the coordinator’s
spawned threads isexecuting, blocked if at least one of the
coordinator’s threads isblocked and none areexecuting, and
joined if all of the coordinator’s threads arejoined. A thread
can easily update its state appropriately as its locks are requested
and released during the locking algorithm described above, in the
process also causing the thread to recursively update the state of
its cfor coordinator. The program is deadlocked if and only if the
top-levelcfor coordinator ever has its state set toblocked.

Once a deadlock has been detected, we use a simple recovery
algorithm. Starting from the top-levelcfor coordinator, we walk
down the unique path to the highest thread in the tree ofcfor co-
ordinators that has at least two blocked child threads. We then re-
lease all locks held by these blocked threads and re-execute them
in some sequential order. This simple approach guarantees that we
will not encounter another deadlock after restart. To support re-
execution, each thread records the initial values of all variables to
which it writes, so that the variables previously updated at their
owners can be rolled back appropriately during deadlock recov-
ery. We assume that the iterations are idempotent, so there are no
harmful side-effects of re-execution. This is true in many sensor
networks programs, which primarily involve sensing and actuation
as side effects.

4. Evaluation
We have implemented thePleiades compiler and runtime described
in Section 3. In this section, we describe an evaluation of this
implementation for various applications, withPleiades running on
TelosB Tmote Sky motes. We first discuss the performance of a
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Pleiades application relative to a nesC implementation of that same
application. Then, we quantify the performance ofPleiades support
for serializability and nodecut migration.
Pleiades and nesC Comparison.We compare aPleiades imple-
mentation of aPursuit-Evasion Game (PEG) against a hand-coded
node-level nesC implementation of the same application written by
others [7] on a 40 node mote testbed. PEGs [26] have been ex-
plored extensively in robotics research. In a PEG, multiple robots
(the pursuers) collectively determine the location of one or more
evaders using the sensor network, and try to corral them.

The mote implementation of this game consists of three compo-
nents: a leader election module performs data fusion to determine
the centroid of all sensors that detect an evader; a landmark rout-
ing module routes leader reports to a landmark node; in turn, the
landmark routes reports to pursuers. ThePleiades version of PEG
implements the leader election component of PEG, and leverages
the routing provided by thePleiades runtime to route the leader
reports directly to the pursuer. It is less than a tenth of the nesC im-
plementation in terms of lines of code (63 lines as opposed to 780).
An important feature of this application is that it requires no serial-
izability semantics for the core leader election module; in fact, the
data we present below were obtained using a version ofPleiades
that did not support serializability. We also implemented PEG on
Pleiades with full serializability support for leader election, and
found that it does not incur additional overhead due to locking, be-
cause leader election needs only read locks, which are acquired
once at the beginning, and retained until the end.

Figure 5 depicts the main application-perceived measure of per-
formance, theerror in position estimate on a topological (reduced)
map of the environment [16]. This figure is highly encouraging; the
Pleiades program exhibits comparable error to a hand-crafted nesC
program. The frequency of 2- and 3-hop errors is slightly higher
for Pleiades-PEG than for mote-PEG. On the other hand,Pleiades-
PEG does not incur instances of 5-hop error that mote-PEG does.

We also measured the latency between when a mote detects
an evader and when the corresponding leader report reaches the
pursuer. Mote-PEG has noticeably lower latency thanPleiades-
PEG, but for most nodes (about 80%), this latency difference is
within a factor of two. This is because our implementation of
Pleiades is unoptimized for handlingcfor forks and joins, and
because our nodecut placement implementation relies on relatively
static hop count information. There is scope for improving both
significantly.

The average network overhead for mote-PEG is 193 messages
per minute, while forPleiades-PEG is 243. The minimum and
maximum network overhead is 137 and 253 for mote-PEG and 146
and 341 forPleiades-PEG. While these results merit further study,
they suggest thatPleiades performance can be comparable to that
of node-level programming.
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Serializability Evaluation. We ran the street-parking application
of Figure 1 on a 10-node chain mote topology. This topology is an
extreme configuration, and thus stresses our serializability imple-
mentation, because the efficiency of packet delivery in a chain of
wireless nodes drops dramatically with the length of the chain. In
our experiments, 10 requests for free spots arrive sequentially at the
node in the center of the chain. To illustrate the power ofPleiades’s
serializability guarantees, and to understand its performance, we
ran four different versions of the application:SP-NL, in which we
configured thePleiades compiler and runtime to disable locking;
SP, which uses the completePleiades compiler and runtime for
locking, deadlock detection and recovery;SPID-NR, in which we
induced a deadlock into the application and configured thePleiades
runtime to disable deadlock recovery; andSPID, which uses the
completePleiades implementation with the deadlock-induced ap-
plication. To improve performance, we implemented message ag-
gregation for lock requests and forwarded locks across consecutive
nodecuts.

As expected,SPandSPID execute correctly, assigning exactly
one spot to each request.SPID-NR fails to allocate a spot to all
but the first request; in the absence of recovery code, the program
deadlocks after the first request. Finally,SP-NL violates the cor-
rectness requirements of the application, correctly satisfying the
first request, but assigning two free spots in each direction of the
center node for the next four requests; consequently, it also fails to
satisfy the last four requests.

Figure 6 plots the time taken to assign a spot to the request, and
Figure 7 plots the total number of bytes transmitted over the net-
work for each request. The same qualitative observations may be
drawn from both graphs.SP andSPID message cost and latency
increase since successive requests have to search farther out into
the network to find a free spot. However, for the initial requests,



the overhead ofSP is comparable to that ofSP-NL. Moreover,
SPID message cost and latency are only moderately higher than
SP. The difference is attributable to the sequential execution of the
cfor threads during deadlock recovery, with rollback overhead be-
ing negligible. The periodic spikes in both plots arise because, for
even-numbered requests, there are two free spots at the same dis-
tance away from the requester that contend to satisfy the request.
These two free spots also cause a deadlock in the case ofSPID.
Finally, the latency and overhead ofSP-NL flatten out for later re-
quests because they each incur the same cost: they search the en-
tire network for a free spot and fail, because spots were incorrectly
over-allocated during earlier requests.

Thus, ourPleiades implementation correctly ensures serializ-
ability and incurs moderate overhead for deadlock detection and
recovery. The absolute overhead numbers imply that even for the
request which encounters the highest overhead, the average band-
width of a node used byPleiades is around 250bps, with the max-
imum being 1kbps at the node where the requests come in. This is
quite reasonable, considering that the maximum data rate for the
TelosB motes is 250kbps.

The absolute latency seems modestly high compared to the
expected response time for human interactivity. For example, the
last request takes almost a minute and a half to satisfy. This is
an artifact of the end-to-end reliable transport layer thatPleiades
currently uses, which waits for 2 seconds, before trying to resend a
packet that has not been acknowledged as received. We believe that
the overall latency can be significantly reduced by optimizing the
transport layer.
The Benefits of Migration.Finally, we briefly report on a small ex-
periment on a 5-node chain that quantifies the benefit ofPleiades’s
control flow migration. In this application, a node accesses node-
local nodesets from other nodes more than a hop away, so that
application-level network information can be gathered. Without mi-
gration, the total message cost is 780 bytes, while, with migration,
it is 120 bytes. Thus, we see that, even for small topologies, control
flow migration can provide significant benefits.

5. Related Work
Pleiades is related to many programming concepts developed in
parallel and distributed computing. We classify related work into
three broad categories. They are embedded and sensor systems lan-
guages, concurrent and distributed systems languages, and parallel
programming languages.
Embedded and Sensor Networks Languages.Several researchers
have explored programming languages for expressing the global
behavior of applications running on a network of less-constrained
32-bit embedded devices (e.g., iPAQs).Pleiades’s programming
model borrows from our earlier work on Kairos [8], an extension
to Python that also provides support for iterating over nodes and
accessing node-local state. However, Kairos does not support au-
tomatic code migration or serializability. Kairos provides support
for application-specific recovery mechanisms [9], whichPleiades
lacks. SpatialViews [25] is an extension to Java that supports an
expressive abstraction for defining and iterating over a virtual net-
work. In SpatialViews, control flow migrates to nodes that meet
the application requirements. To avoid concurrency errors, Spa-
tialViews restricts the programming model within iterators.

Regiment [24] is a functional programming language for cen-
trally programming sensor networks that models all sensor data
generated within a programmer-specified region as a data stream.
Regiment is a purely functional language, so the compiler can po-
tentially optimize program execution extensively according to the
network topology. On the other hand, since the language is side-

effect-free, it does not support the ability to update node-local state.
For example, the car parking application would be much harder to
write in Regiment.

TinyDB [19] provides a declarative interface for centrally ma-
nipulating the data in a sensor network. This interface makes cer-
tain applications reliable and efficient but it is not Turing-complete.
Because TinyDB lacks support for arbitrary computation at nodes,
it cannot be easily used to implement the kinds of applications we
support, like car parking. Research on Abstract Regions [29] pro-
vides local-neighborhood abstractions for simplifying node-level
programming. This work is focused on programmability and effi-
ciency and does not provide support for consistency or reliability.
Concurrent and Distributed Systems.Argus [17] is a distributed
programming language for constructing reliable distributed pro-
grams. Argus allows the programmer to define concurrent objects
and guarantees their atomicity and recovery through a nested trans-
actions facility, but makes the programmer responsible for en-
suring serializability across atomic objects and for handling any
application-level deadlocks. Recently, composable Software Trans-
actional Memory (STM) [10] has been proposed as an abstrac-
tion for reliable and efficient concurrent programming. Also, Ato-
mos [2] is a new programming language with support for implicit
transactions and strong atomicity features.

Our cfor construct, with its serializability semantics and nest-
ing ability, is designed in a similar spirit—a concurrency prim-
itive with simplicity, efficiency, reliability, and composability as
goals. Unlike these systems, however,Pleiades derives concur-
rency from a set of loosely coupled and distributed, resource con-
strained nodes. Therefore, thePleiades implementation ofcfor
emphasizes message and memory efficiency over throughput or la-
tency. For the same reason, it uses a simple distributed locking al-
gorithm for serializability and a novel low-state algorithm for dis-
tributed deadlock detection and recovery.Pleiades’ cfors are also
similar to atomic sections in Autolocker [20] in that both imple-
mentations use strict two-phase locking. But Autolocker guaran-
tees the absence of deadlocks through pessimistic locking, while
Pleiades uses an optimistic locking model in which locks are ac-
quired or upgraded as needed, and any deadlocks are detected and
recovered by the runtime.

Approaches to automatic generation of distributed programs
have also been explored. For example, Coign [12] is a system
for automatically partitioning coarse-grained components. Magne-
tOS [18] also has support for partitioning a program written to a sin-
gle system image abstraction. A program transformation approach
for generating multi-tier applications from sequential programs is
described in [22]. All these systems are primarily meant for par-
titioning and distribution of programs into coarse-grained compo-
nents, that can then be run concurrently on multiple nodes.Pleiades
differs from these systems in generating nesC programs with fine-
grained nodecuts and supporting lightweight control flow migration
across such nodecuts.
Parallel Processing Languages.Pleiades differs from prior paral-
lel and concurrent programming languages such as Linda [6] and
Split-C [3] by obviating the need for explicit locking and synchro-
nization code.Pleiades also differs from automatic parallelization
languages such as High Performance Fortran [14] by equipping
the compiler and runtime with serializability facilities. This is be-
cause parallel programming languages focus on data parallelism
on mostly symmetric processors, leaving to the programmer the
responsibility of ensuring deadlock and livelock freedom at the ap-
plication level. On the other hand,Pleiades offers task-level par-
allelism, where data sharing among sensor nodes is common, and
where it is desirable to offload the correct implementation of con-
currency to the compiler and runtime.



6. Conclusions and Future Work
Pleiades enables a sensor network programmer to implement an
application as a central program that has access to the entire net-
work. This critical change of perspective simplifies the task of pro-
gramming sensor network applications on motes and can still pro-
vide application performance comparable to hand-coded versions.
Pleiades employs a novel program analysis for partitioning cen-
tral programs into node-level programs and for migrating control
flow across the nodes.Pleiades also provides a simple construct
that allows a programmer to express concurrency. This construct
uses distributed locking along with simple deadlock detection and
recovery to ensure serializability. Together, these features ensure
that Pleiades programs are understandable, efficient, and reliable.
Our implementation of these features runs realistic applications on
memory-limited motes.

While our currentPleiades implementation is robust to one as-
pect of network dynamics (packet loss), the failure of acfor co-
ordinator can cause an application to fail. We are currently imple-
menting support for handling node dynamics such as crashes and
additions through a simple retry-based mechanism that extends the
reliable routing and transport mechanisms already present in the
runtime. The basic idea is that node failures trigger an undo mech-
anism similar to that already used for deadlock recovery, which
allows the initiator of the computation to retry. This approach natu-
rally fits the semantics of thecfor construct and complements our
programmability, efficiency and reliability contributions.

In future work, we intend to optimize the message and latency
costs of our implementation by exploring more efficient message
batching alternatives. We also plan to support various relaxed con-
sistency models as alternatives to serializability. In addition, we
would like to allow the programmer to be able to easily trade off
quality of results for time of distributed execution. Finally, we plan
to examine approaches to specifying sophisticated power manage-
ment policies inPleiades.
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