Title
Angular Distribution of n-p Scattering with 90 Mev Neutrons

Permalink
https://escholarship.org/uc/item/64j2t2mw

Author
Hadley, J.

Publication Date
2010-05-28

Peer reviewed
BERKELEY, CALIFORNIA
UNIVERSITY OF CALIFORNIA
RADIATION LABORATORY

Cover Sheet
Do not remove

INDEX NO. UCRL-51
This document contains _ pages
and _ plates of figures.
This is copy _ of 12 Series A

Issued to: Information Division

RESTRICTED

CLASSIFICATION CANCELLED BY AUTHORITY
OF THE DIRECTOR, AEC
CLASSIFICATION COMMITTEE

Each person who received this document must sign the cover sheet in the space below.

<table>
<thead>
<tr>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
<th>Route to</th>
<th>Noted by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I
ANGULAR DISTRIBUTION OF \(n-p \) SCATTERING WITH 90 MeV NEUTRONS

Radiation Laboratory, Physics Department
University of California, Berkeley, California

One of the important experiments that became feasible as soon as the
184" cyclotron started to operate was the measurement of the angular dependence of
\(n-p \) scattering. As is well known, experiments of this type acquire particular
significance when the de Broglie wave-length of the neutron is comparable with the
range of nuclear forces.

The neutron beam\(^{(1)}\) of the cyclotron has an angular distribution well
described by Serber's\(^{(2)}\) stripping theory. We assume that the energy distribution

\[(1) \text{A. G. Helnholz, E. M. McMillan, D. Swefl, Phys. Rev. 72, 1003 (1947)} \]
\[(2) \text{R. Serber, Phys. Rev. 72, 1007 (1947)} \]

of the neutrons is also that predicted by this theory; i.e., has a maximum at 90 MeV;
the corresponding wave-length in the center of mass system is \(\lambda = 0.95 \times 10^{-13} \) cm.

We have used these neutrons to measure the \(n-p \) cross section as a function
of the angle of scattering \(\Theta \), in the CM system, between 70° and 170°. Fig. 1 shows
a schematic layout of the apparatus. The neutron beam produced by stripping 180 MeV
deuterons on a Be target was collimated to about 2.5 cm diameter and scattered by
paraffin or polyethylene targets which were larger in diameter than the neutron beam.
were detected.
The recoil protons used for the measurement by a telescope of 3 proportional counters
in coincidence pointing towards the scatterer. The primary neutron beam was monitored
either by the protons scattered by an auxiliary hydrogenous target or by a bismuth
fission chamber.

The telescope was made insensitive to protons below a certain energy by the
absorber \(A \). The thickness of the absorber was adjusted so that protons of energy
less than \(6\epsilon \cos^2 \frac{\pi - \Theta}{2} \) MeV could not enter the third counter. Thus we made sure that
if the recoil protons detected originated from elastic collisions of neutrons on hydrogen, the incoming neutron had an energy greater than 66 Mev. We have neglected some small relativity correction. By taking background measurements with a carbon scatterer and with no scatterer we distinguished the protons due to n-p scattering and those due to (n-p) reactions on C and air.

Table 1 gives the cross-section as a function of θ. Smaller and larger angles are being investigated but the results will not be available for some time.

From what we have said above it is apparent that our measurements give only a number proportional to $d\sigma/d\omega$, where ω is the solid angle; however we have normalized our figures by the following method: we have hypothetically assumed that $d\sigma/d\omega$ is the same for θ and $\pi - \theta$, and we have made the total scattering cross-section 0.063 x 10^{-24} cm2 as reported by Cook, McMillan, Peterson, and Sewell$^{(3)}$. Our assumption on

the behavior of the cross-section for $\theta < 90^\circ$ is not in disagreement with some preliminary observations at $\theta < 90^\circ$ by us and with some cloud-chamber data communicated to us by Mr. W. Powell, but is by no means established. The data are also plotted in Fig. 2 with the relativistic corrections.

In order to avoid some sources of systematic error in these experiments, we have checked the following:

1. Plateau of the coincidence counting rate of the counter telescope versus: voltage in the counters; bias voltage of the discriminators; duration of the opening of the coincidence gate of the counters.

2. Proportionality of the number of coincidence counts in the telescope to the intensity of the primary beam and to the thickness of the scattering target for a given primary neutron beam.

3. The influence of Rutherford scattering of the absorber A on the efficiency of the coincidence telescope.

4. Scattering by the air column traversed by the neutron beam.

5. The error introduced by the finite dimensions of the scattering target.
6. Whether the coincidence system counted only protons coming from the scatterer and all those with energy $> 66 \cos^2 \theta$.

This list is not final and there are some important controls that should still be performed, but we feel confident enough of our results to give this preliminary account.

It must be added that these experiments were performed independently with two separate sets of equipment which were similar in principle but differed in many details. This procedure helped considerably in making us aware of unsuspected causes of trouble.

The peak of protons in the forward direction is a clear indication of the existence of exchange forces between neutrons and protons. A more detailed analysis that takes into account the total scattering cross section and the angular distribution indicates that there might be comparable amounts of ordinary forces.

The authors wish to express their appreciation to Drs. E. M. McMillan, W. Powell, and R. Serber for interesting discussions. This work was done under the auspices of the Atomic Energy Commission under Contract No. W-7405-eng-48.
TABLE 1

DIFFERENTIAL CROSS SECTION IN 10^{-28} cm^2
(normalization hypothetical)

The errors listed are based only on statistical standard deviations.

<table>
<thead>
<tr>
<th>Scattering Angle θ</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>43.7 ± 4.0</td>
<td>35.3 ± 2.8</td>
<td>39.0 ± 3.7</td>
<td>40.8 ± 3.1</td>
</tr>
<tr>
<td>80</td>
<td>42.6 ± 3.5</td>
<td>32.6 ± 4.9</td>
<td>40.4 ± 3.7</td>
<td>40.2 ± 2.5</td>
</tr>
<tr>
<td>90</td>
<td>42.0 ± 2.4</td>
<td>44.0 ± 4.2</td>
<td>45.1 ± 4.9</td>
<td>43.5 ± 2.4</td>
</tr>
<tr>
<td>100</td>
<td>47.0 ± 3.0</td>
<td>42.4 ± 6.1</td>
<td>48.0 ± 3.7</td>
<td>46.7 ± 2.7</td>
</tr>
<tr>
<td>110</td>
<td>50.2 ± 3.4</td>
<td>51.8 ± 6.1</td>
<td>53.0 ± 3.5</td>
<td>51.4 ± 2.5</td>
</tr>
<tr>
<td>120</td>
<td>59.0 ± 2.7</td>
<td>59.7 ± 6.5</td>
<td>63.2 ± 4.5</td>
<td>60.4 ± 2.4</td>
</tr>
<tr>
<td>130</td>
<td>66.8 ± 3.1</td>
<td>70.0 ± 7.0</td>
<td>61.5 ± 3.8</td>
<td>65.6 ± 2.7</td>
</tr>
<tr>
<td>140</td>
<td>79.5 ± 3.1</td>
<td>78.5 ± 7.6</td>
<td>84.7 ± 5.6</td>
<td>81.2 ± 2.8</td>
</tr>
<tr>
<td>150</td>
<td>92.5 ± 4.4</td>
<td>99.0 ± 7.0</td>
<td>94.0 ± 5.4</td>
<td>94.1 ± 4.1</td>
</tr>
<tr>
<td>160</td>
<td>105.5 ± 3.8</td>
<td>127.0 ± 10.6</td>
<td>107.5 ± 7.9</td>
<td>107.7 ± 3.8</td>
</tr>
<tr>
<td>170</td>
<td>126.0 ± 5.8</td>
<td>127.5 ± 14.0</td>
<td>123.2 ± 9.4</td>
<td>125.7 ± 5.0</td>
</tr>
</tbody>
</table>

θ Neutron scattering angle in the center of mass system.

(1) Composite of runs on apparatus 1.
(2) Run on apparatus 2, scatterer 150 mg/cm^2 $(CH_2)_n$
(3) Run on apparatus 2, scatterer 283 mg/cm^2 $(CH_2)_n$
(4) Weighted average of all runs with estimated error.
PLAN VIEW OF EXPERIMENTAL ARRANGEMENT

FIG. 1