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Abstract Evolutionary improvements in Geographic Information Systems (GIS) now rou-
tinely allow the management and mapping of spatial-temporal information. In response,
the development of statistical models to combine information of different types and spatial
support is of vital importance to environmental science. In this paper we develop a hier-
archical spatial statistical model for environmental indicators of stream and river systems
in the United States Mid-Atlantic Region by combining information from separate mon-
itoring surveys, available contextual information on hydrologic units and remote sensing
information. These models are used to estimate the indicators throughout the riverine system
based on information from multiple sources and aggregate scales. The analysis is based on
information underlying the Landscape Atlas of the mid-Atlantic region produced by the US
Environmental Monitoring and Assessment Program (EMAP). We also combine information
from two overlapping separate monitoring surveys, the EMAP Stream and River Survey and
the Maryland Biological Streams Survey. We present a general framework for comparative
distributional analysis based on the concept of a relative spatial distribution. As an applica-
tion, the spatial model is used to predict spatial distributions and relative spatial distributions
for a watershed.

Keywords Spatial statistics - GIS - Hierarchical models - Relative distribution - EMAP

1 Introduction

Policy decisions by governmental and industrial organizations increasingly require accurate
information about the environment. Information is needed on the status of, and trends in,
basic environmental conditions in order to develop environmentally appropriate policies.
In addition, proper planning requires an understanding of the interactions between social
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and physical environmental processes. For policy makers and stakeholders to evaluate the
range of options, a framework for evaluating the potential impact of alternative policies on
environmental and social outcomes is essential.

While much of the initial interest in the population-environment interaction focused on
the impact of humans on their environment, over the last decade there has been increasing
interest in the reverse question: the impact of environmental degradation on the health and
wellbeing of populations. This interest has been motivated by the recognition that certain
types of environmental degradation, such as incinerators or polluting industries, tend to have
a disproportionate impact on the local population. The spatial distribution of such environ-
mentally undesirable activities has therefore become an important public health issue. To the
extent that these activities are spatially concentrated in economically disadvantaged com-
munities, this raises questions of environmental justice: “the fair treatment for people of all
races, cultures, and incomes, regarding the development of environmental laws, regulations,
and policies” (EPA 1993).

Evaluating questions of environmental justice requires information from diverse sources
to be collected, organized, and combined. For example, consider investigating the relation-
ship between the level of pollution of streams and the economic status of the surrounding
residents. The pollution level can be assessed based on an environmental monitoring survey
on selected stream sites. These will need to be adjusted for biophysical cofactors, such as soils
and land cover, that effect pollution levels, but are not necessarily evidence of environmen-
tal injustice. Such information may be available in separate monitoring surveys, contextual
spatial databases and remote sensing sources. The characteristics of the human population
usually need to be determined by additional sources of data, such as social surveys or census
information.

Combining all of these different sources of information has been facilitated by dramatic
improvements in Geographic Information Systems (GISs). These now routinely allow the
management, display and mapping of spatial-temporal information. More importantly they
allow the “spatial indexing” of multiple types of information over the study region. To a large
extent, however, these new facilities are descriptive, rather than analytical. The methodology
for analyzing the interrelationships between these multiple sources of information remains
underdeveloped.

To move beyond descriptive analysis, statistical methods are necessary. Statistical models
make it possible to investigate hypotheses regarding the complex relationships within and
between the different levels of analysis. They also provide the framework for evaluating the
findings. This enables researchers to draw inferences about characteristics of the phenom-
ena most directly relevant to the environmental social science questions, and to quantify
the uncertainty of the resulting inference. The development of statistical models to combine
information from the different sources of spatial data is of vital importance to environmental
social science.

With respect to environmental data, the current situation is ironically one of both wealth
and poverty. The wealth arises from the many forms of remote sensing and spatial extant
data that provide coverage of the regions of interest. The poverty arises from the lack of
longitudinal data with spatial extent and representativeness. Most environmental monitoring
programs are subject to scientific, political, ethical and cost considerations, and these have
resulted in an unwieldy patchwork of spatial-temporal information.

A notable exception is provided by the US Environmental Monitoring and Assessment
Program (EMAP). EMAP is designed to address questions about the current status, changes,
and trends in indicators of ecological condition of the nation’s ecosystems (Messer et al.
1991). The EMAP Landscape Atlas of the mid-Atlantic region (Jones et al. 1997) represents
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one of the first regional-scale ecological assessments that incorporates multiple sources of
non-EMAP data. It is a extraordinary achievement in combining multiple data sources, and
will clearly be the basis for the development of environmental statistics in the future.

In this paper we take advantage of the opportunities that EMAP Landscape Atlas of the
mid-Atlantic region provides. We complement the mapping presented in the Atlas with new
statistical models for combining information from multiple sources to gain insight into the
complex relationship between environmental factors.

An excellent review of traditional statistical methods for combining environmental data is
given by Cox and Piegorsch (1996), Piegorsch and Cox (1996), and Cox (1998). For a discus-
sion of issues for combining information from different agricultural experiments, see Besag
and Higdon (1999). Handcock et al. (2000) and Handcock et al. (2005) develop statistical
models to combine social survey data with population-level census information. They show
how likelihood-based inference for models based on survey data can be extended to include
census and registry information. The paper also reviews methods used by social scientists
for combining data of this type.

In many papers on stochastic modeling the data structure is clear and simple. In such
papers, the data sections can be abstracted. While model specification is usually driven by
the structure of the available data, it is especially true here where a primary motivation for
the model is to combine multiple sources of information. As such the description of the data
sources and types in Sect. 2 is more detailed than usual. This is followed in Sect. 3 by a devel-
opment of the model. In Sects. 4 and 5 we develop preliminary approaches for integrating
social science data into these environmental models. Here we draw on methods developed
for measuring the spatial distribution of environmental indicators (Handcock 1999), relative
distribution methods for measuring economic inequality (Handcock and Morris 1999), and
spatial-temporal models for community economic status (McLaughlin and Handcock 1999).

This approach in this paper is an attempt to answer the call by Cox (1998) for “...the
development of a theoretical framework for integrating spatial, and [probability]-sample
methods for environmental assessment, new methods and extensions of existing methods for
combining spatial data collected at different aggregate scales, ..., and hierarchical methods
that enable combination and intercomparison of different environmental studies.”

2 Specific evaluation of ecological indicators of streams

In this section we describe the region of study, and the component sources of information
that will be combined. Streams form a continuous network embedded in the watersheds they
drain. The conditions of the watersheds and ecoregion through which the streams run is
reflected in the quality of the ecological indicators of the streams (Herlihy et al. 2000). Any
modeling approach must respect this fundamental tenet of limnology—that these conditions
depend on the network structure of the streams, and the fact that water moves continuously
downstream (Vannote et al. 1980).

2.1 The study area: The United States Mid-Atlantic region

The study area is the mid-Atlantic region of the eastern United States and its watersheds.
This region is defined by the EPA to be the land and near-coastal area that includes all of
EPA Region IIT and parts of Regions II and I'V. The region extends from southern New York
into northeastern North Carolina. The region includes EPA Region III (i.e., Pennsylvania,
West Virginia, Maryland, Delaware, and Virginia); the Susquehanna and Allegheny River
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basins, which extend into New York; the Delaware River basin, which extends into New Jer-
sey; and the Chowan-Roanoke and Neuse-Pamlico basins, which extend into North Carolina.
The mid-Atlantic region encompasses the area from the mid-Appalachian highlands to the
estuaries.

This region was chosen for a number of scientific and practical regions. The mid-Atlantic
region has been extensively studied by the EPA and other scientific groups. The region is
one of the most data-rich areas in the country, in part because of its dense population and
proximity to Washington, D.C.

Most of the component surveys, especially those addressing water-related concerns, fur-
ther partition the region into the USGS defined hydrologic accounting units. Roughly speak-
ing, these units follow watershed boundaries—areas of land that are drained by a single
stream, river, lake or other body of water. Hence watersheds are the natural units for the
environmental analysis based on riverine systems. We note that the hydrologic units are not,
strictly speaking, watersheds in the sense of topographically-defined catchment areas. Fol-
lowing the usage in the component surveys, we shall use these as the basic unit of analysis
and for simplicity refer to them as watersheds. The methods developed here can equally be
applied to other partitions of the region—indeed in Sect. 6 we consider counties.

The basic features of the study region are given in Figure 3.4 of Jones et al. (1997). It
provides an overview of the land cover and land use type. Figure 3.3 of Jones et al. (1997)
represents the hydrography of the region, that is, the major rivers, streams and watersheds.
The watersheds are represented by the (8-digit) hydrological units within the region.

One of the problems indicated by the hydrography of the region is that of using naturally-
defined units such as watersheds to assess environmental conditions over politically-defined
units such as counties or states. Individual watersheds can lie in two or more states or coun-
ties. This issue of misalignment is fundamental one in environmental statistics. Excellent
progress has been made on these issues by Mugglin et al. (2000), Mugglin and Carlin (1998),
Mugglin et al. (1999), and Gotway and Young (2002). These papers are mainly concerned
with variables that are aggregated over differing sets of units. To the extent that the models
proposed here are used to change units, they can be regarded as variants of the modeling
approach of the above papers. The models described below focus on combining multiple
sources of information and are based on explicitly modeling the underlying riverine systems.

2.2 Sources of information on the Mid-Atlantic region combined

In this section we briefly review the data sources used. We focus on readily available, com-
patible and mature data sets. Most of the data are available in formats readily adapted to
standard GIS and statistical analysis packages (e.g., ARC/INFO, SAS and R).

This paper uses as its foundation the work of the EPA/ORD Mid-Atlantic Integrated
Assessment (MAIA). For an description of MAIA see http://www.epa.gov/emap/maia. A
major part of this work is the Landscape Atlas of the mid-Atlantic region (Jones et al.
1997). The Atlas is an assessment of relative ecological conditions across the mid-Atlantic
region, and was published in April 1998. The Atlas identifies, with never-before achieved
detail and comparability, patterns of land cover and land use across the region. The report is
based on data from satellite imagery and spatial databases on biophysical features such as
soils, elevation, and human population patterns. It compares nine landscape indicators on a
watershed-by-watershed basis for the lower 48 states (at a relatively coarse-scale resolution
of 1km), placing the mid-Atlantic region in the context of the rest of the country. Using
finer-scale spatial resolution (e.g., 30—-90 m), the report then analyzes and interprets environ-
mental conditions of the 125 watersheds in the mid-Atlantic region based on 33 landscape
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indicators. Results are presented relative to four general themes identified by stakeholders
in the region: (1) people (potential human impacts), (2) water resources, (3) forests (forest
habitat), and (4) landscape change. The data underlying this Atlas is publicly available. For
an description of the Atlas, see http://www.epa.gov/maia/html/maia-atlas.html.

Here we use two specific component surveys. The first is the EMAP Mid-Atlantic Inte-
grated Assessment (MAIA) Survey (Larsen and Christie 1993). We use the Stream and River
Survey that has data on 100-200 sites from 1993-96. Some of the sites are repeat visits.
For a description of the EMAP Surface Waters Mid-Atlantic Streams 1993-96 data set, see
http://www.epa.gov/emap/html/datal/surfwatr/data.

The second source is the Maryland Biological Streams Survey (MBSS) (Heimbuch et
al. 1998). The MBSS is a long-term monitoring program designed to describe the current
status of aquatic biota, physical habitat and water quality in first, second and third order
non-tidal streams within the state of Maryland. The MBSS was implemented as a three-
year study in 1995. Sampling is probability-based, and stratification is based on stream
order and drainage basin. Approximately 1000 sites were sampled during 1995-1997. A
“State of the Streams” report which summarizes the initial round of the MBSS has been
completed (http://www.epa.gov/maia/html/mbss.html). For a description of the MBSS see
http://www.dnr.state.md.us/streams.

These surveys are supplemented by the EMAP Streams network database (RF3) (Dewald
and Olsen 1994). This is the primary database for the locations of the rivers and streams in
the mid—Atlantic region. We use the River Reach File Version 3, derived from the U.S. Geo-
logic Survey Digital Line Graph—streams, 1:100,000-scale. The study uses all first- through
third-order (i.e. wadeable) streams. There are 230,400 kms of wadeable streams in the study
region. Note that there is an overlap between the Maryland monitoring survey and the EMAP
monitoring survey, as Maryland is a subset of the mid-Atlantic region. The density of moni-
toring sites from the Maryland survey is much greater than the EMAP survey in Maryland.
This offers an opportunity to calibrate the EMAP information and use the Maryland infor-
mation to build a better model of the local-scale structure of environmental indicators that
can be leveraged over the mid-Atlantic region by combination with the EMAP monitoring
survey.

2.3 Indicators of environmental condition

As detailed in above references, the two monitoring surveys (EMAP and MBSS) collect an
array of ecological indicators at each site. These include various biotic, chemical, physical,
riparian and watershed characteristics (Lazorahak et al. 1998). Fish species are particularly
effective indicators of the condition of aquatic systems (Fausch et al. 1990). Human impact of
streams and the environment affect key characteristics of aquatic ecosystems: water quality,
habitat structure, hydrologic regime, and biologic interactions (Karr and Dudley 1981). In
the next section we develop a model for a single indicator, with natural extensions left for
Sect. 7.

3 Methods for combining information from multiple surveys
In this section we propose statistical modeling methods for combining information from the
surveys identified in the previous section. The purpose of these models is to create a stochastic

representation for the measurement at each location on the riverine system. This represen-
tation forms the basis for the further modeling developments proposed in Sects. 4-6. The

@ Springer



272 Environ Ecol Stat (2007) 14:267-284

underlying modeling approach is hierarchical to allow complex structure to be represented by
a hierarchy of relatively simple model specifications. The idea is to model the spatial depen-
dence indirectly through latent stochastic processes. Related work is Besag (1974, 1975),
Cressie (1995), Mollie and Richardson (1991), and Bernardinelli and Monotomoli (1992).
Further references are given below.

Let R C IR? be the set of locations on rivers and streams in the mid-Atlantic region. We
define R operationally by those in the River Reach File Version 3 (RF3). Let W (x) represent
the hydrologic unit (watershed) that the location x belongs, and {W;:i =1, ..., H} repre-
sent the set of all hydrologic units. The units form a partition of R. Let Z(x) be a measure
at each location in R. We consider a number of indicators of condition and stress related to
fish or water chemistry. For simplicity of exposition, we shall consider linear formulation
for Z(x) here. However the approach can be extended to cover much more general forms—
we postpone this to Sect. 6. Throughout we will use as an example the fish index of biotic
integrity (IBI) (Karr et al. 1986).

First we describe a model for the measure at each location. We write:

Z(x)=Lx)B1 +Cx)B2 + Sx)B3 + n(W(x); ¥) + ¢ (x;v) +€(x;0) nH

where the first three terms capture variation due to differences in covariates, the ¢ and 1 terms
capture residual spatial variation and the last term the unexplained variation. The terms are:

L(x) row vector of location-specific covariates at location x and are potentially spatially
varying in a neighborhood of x. These measures are required to be known at each location
in R. Examples, of covariates are latitude, longitude, and elevation. We will also include
here indicators for the monitoring survey that provide the measurement. Hence systematic
differences between the measurements of the surveys, here EMAP and MBSS, can be iden-
tified. These difference could be due to difference in the collection protocol or calibration
differences. Clearly if more complicated calibration issues are envisaged they can also be
added here or in the stochastic components. This set of covariates is restricted because we
also need to know them at each value in R.

C(x) row vector of contextual covariates related to location x . These measures are required
to be known at each location in R, but can be areal. That is, they are a characteristic of an
area associated with the location x. Examples of covariates are characteristics of the reaches
from RF3 such as stream order and stream level. Variables on demographic characteristics,
air pollution, agricultural usage, human use index from the Landscape Atlas database are
include here. This set is also restricted because we need to know them at each value in R.

The effects of political divisions can be investigated using contextual variables to indicate
the location is within a given political division. The most direct example is the state (or
states) that the watershed resides in. While the watershed does not necessarily respect state
boundaries, state and local government regulations may directly influence the environmental
condition and human activities. Hence the relative comparison of state-level effects if a very
important way of assessing the role of institutions at the state level. This approach can be
applied to other political division such as labor-market regions and counties (See Sect. 6).

S(x) row vector of complete coverage covariates related to location x. These measures
are assumed to be known at each location in the region, including those at each location in
R. Examples of covariates are biophysical features such as soil types from the USDA Natu-
ral Resources Conservation Service soils database, forest habitat, riparian cover, and human
population patterns available from the Landscape Atlas database and other satellite-based
landscape indicators.

Note that this division between location-specific, contextual, and complete coverage co-
variates is not a requirement of the model. While the division is artificial from a modeling
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perspective it serves the theme of combining data sources via a model by clarifying the precise
linkage of contextual, complete coverage and location-specific data types with the random
field Z(x). Within the model the components are treated similarly. The taxonomy is mainly
to aid the identification of factors from the component surveys and to group the factors for
interpretation. Each of these terms appears in a linear functional form with regression coef-
ficient vectors (81, B2, B3). The functional form of the covariate vectors themselves can be
adapted so that this functional form is appropriate. Note the spatial variation terms represent
the effects of unadjusted for, or unobserved, covariates as well as the effects of spatial prox-
imity. Whether we believe in the existence of true spatial proximity effects depends on the
philosophical interpretation of the model. If we believe the model is a causal representation
then the latent variables only approach is compelling. If we believe the model is descriptive
then there is room for the residual spatial proximity effects.

In addition to these effects we explicitly model the spatial variation between and within
watersheds.

n(W(x); y) latent between watershed effects. Each location within the same watershed
receives the same effect. It represents the overall level differences between the units. We will
consider two models for {n(i; y) : i = 1,..., H}. The first represents them as fixed but
unknown environmental characteristics (i.e., a classical “fixed effects” specification). This
representation is of interest as the watershed are unchanging over the time scale of the study,
and the watershed effects are themselves of direct scientific interest. Under the second speci-
fication the {n(i; y) : i =1, ..., H} form a spatial lattice random field. The simplest model
has the values independent of each other. We use a neighborhood-based lattice pairwise-dif-
ference model (Cressie 1993; Anselin and Florax 1995). Consider a neighborhood system
for the watershed based on spatial contiguity, that is, units that share a common boundary
are neighbors. We capture this effect with a class of non-stationary Gaussian intrinsic auto-
regressions (Besag et al. 1991; Bernardinelli and Monotomoli 1991). Let v;; be prescribed
non-negative weights, with v;; = 0 unless watersheds i and j are neighbors and let A,
be a scale parameter. The conditional distribution of 7(i; y) given the other effects in the
watershed is specified to be Gaussian:

. o vij
NG y) |G y) i jsy ~N | X LGy,

Ay U
JEWN, i+ yVi+

where NW; represents the watersheds j that are neighbors of i and v; is the sum over
J € NW; of v;;. The joint distribution of the between watershed effects is then an intrinsic
Gaussian random field. The basic continuity scheme is contiguity, although alternative length
schemes can clearly and fruitfully be considered, for example, length of common boundary,
percentage of common boundary. The parameter y includes A,, and others necessary to further
specify the weights.

¢ (x; v) latent within watershed effects within the watershed of location x. We model each
{p(x;v):x € W;},i = 1,..., H as a spatial random field on the riverine system within
each watershed. For simplicity, we shall initially specify that the inter-watershed dependence
is captured by n(W(x); y) and the within watershed spatial fields are independent between
watersheds. This assumption can be relaxed if significant variability can be explained by
doing so. The model within each watershed is a pairwise-difference model (Besag 1989b).
For example, consider a neighborhood system for x based on being on the same stream seg-
ment (according to RF3). That is, two locations are neighbors if, and only if, they belong
to the same stream segment. One would expect that, all else being equal, two locations on
the same stream would more likely have closer values on a measure than two locations on
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separate streams. We capture this effect with a modified class of non-stationary Gaussian
intrinsic autoregressions. The riverine system represented by the RF3 is composed on a
finite, albeit large, number of elements. Let s(x) be the stream element that x € R is on,
and there are a finite number M, say of such elements. We specify that ¢ (x; v) is constant
over the stream element s(x). While a continuum random field on the riverine system is
more appealing in principle, the hybrid irregular lattice version proposed below is designed
to parsimoniously capture the stream-to-stream spatial variation. The main disadvantage of
the continuum approach based on geostatistical models is the difficulty of specifying the
variogram due to a lack of information at local scales. However for general processes the
geostatistical approach has many advantages, as Zimmerman and Harville (1991) show with
application to agricultural experiments. Progress on continuum models has been made (Kel-
sall and Wakefield 2002; Moller 1998; Ecker and Gelfand 1997, Best et al. 1998). See Besag
and Higdon (1999) for additional references and a discussion of these issues.

Returning to our model, prescribed non-negative weights, w(x, y) = W(s(x), s(y)), with
w(x,y) = 0 unless x and y are neighbors. As there are M stream elements the values of
w(x, y) forma M x M symmetric matrix W. The conditional distribution of ¢ (x; v) given
the other effects in the watershed is specified to be Gaussian:

. . _ o wx,y)
V) [p(y: 1), W) = W),y #xiv~N s(y)ezm) s UASLR I

where Nj(x) represents the stream elements that are neighbors of x, A, is a scale parameter,
and w(x, +) is the sum over s € Nj(x) of W(s(x), s). The joint distribution of the within
watershed effects for each stream element is then an intrinsic Gaussian random field. The
simplest choice of the weights is w(x, y) = 1 if x and y are on the same stream segment.
However we can explore choosing weights proportional to those from a continuous geo-
statistically motivated semivariogram model to additionally capture the decay with distance
between the locations (Raftery and Banfield 1991; the discussion of Besag and Higdon 1999).
A number of neighborhood schemes could drive the spatial variation. For example:

. N1 segment: locations belong to the same stream segment

. Nj stream: locations belong to the same stream, at the same order

. N3 siblings: locations belong to the same stream, but at different orders of the stream
. N4 cousins: locations belong to different streams, but have the same order and source.

AW N —

The above model can be generalized to this case where the weights are adjusted accordingly.
The parameter v defines the structure of the within watershed spatial variation and includes 1,,
and others necessary to further specify the weights. We expect that the precise form of these
neighborhood schemes, and weights depends on the nature of the spatial variation identified
during the data analysis process — this will be explored further in future work.

€(x; o) residual spatial variation. The residual spatial variation is assumed to be inde-
pendent of the other factors in the model. The form of the variation depends on the models
specified for the spatial dependence. If an auto-normal is used for the other terms then € (x; o)
will be assumed to be mean zero Gaussian with standard deviation o.

3.1 Inferential procedures

Based on this model, we use likelihood-based inference for Z(x) to infer the parame-
ters B, B2, B3, ¥, v and o. Most of our likelihood-based inference is within the Bayes-
ian paradigm, mainly as it provides an elegant way of incorporating parameter uncer-
tainty into the final inference and the incorporation of expert knowledge when it exists
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(Gelman et al. 2003). Inference with the Bayesian paradigm, implemented via the now stan-
dard Markov Chain Monte Carlo (MCMC) methods can address, and even solve, many very
difficult inferential problems, often making it the only realistic option.

The likelihood framework makes available exploratory graphical tools useful for inference
about the underlying random field (Handcock et al. 1994). These tools can identify when an
approach is lacking.

In addition to Bayesian inference for the parameters, we will usually be interested in pos-
terior distributions for the latent effects ¢ (x; -) and n(W (x); -). These can be plotted spatially
and use to create maps of summarizing knowledge about Z (x) over the stream network. Here,
however, we emphasize inference for areal measures, the topic of the next section.

4 Models for spatial cumulative distributions

In an increasing number of environmental applications, the comparison of an environmental
indicator across regions requires consideration of more than the usual summary measures
of level and variation. Environmental scientists are increasingly interested in techniques for
comparing changes in distributional shape as well as changes in mean-levels. Traditionally,
comparative research has relied heavily on measures that capture differences in average indi-
ces between regions or rough measures of dispersion over time. These summary measures
leave untapped much of the information inherent in a distribution.

A common distributional tool is the spatial cumulative distribution function (SCDF)
defined over each watershed:

Fi(r) = : / I(Z(x) = r)dx (@)
i| XEW,'

W,
where |W;| is the length of the stream elements in watershed i. The SCDF is a largely under
appreciated characteristic of spatial random fields. The motivation and use of SCDFs is
reviewed in Lahiri et al. (1999). By focusing as they do on the SCDF, scientific attention is
moved from idealized point spatial units to larger, often more relevant, regional units. These
distribution functions, and numerical summary measures derived from them are the basis of
output from the model.

We now propose a model-based approach for the prediction of F;(r). The model (1)
satisfies:

E{Z(x)}= f(x)')B for x € R,

where f(x) = {L(x), C(x), S(x)}, is a known vector function and 8 = (B4, B2, B3) is a
g-vector of unknown regression coefficients. Furthermore, we can represent the covariance
function by

cov{Z(x), Z(y)} = aKg(x, y) forx,yeR

where « > 0 1is a scale parameter, § = (v, y,0) € @ isa p x | vector of structural parame-
ters, and @ is an open set in IR”. For the models illustrated here, the exact form of Kg (x, y)
can be derived directly from the neighborhood dependence structure given for the model
(1). This is one of the advantages of modeling the covariance structure via latent variables
in a hierarchical manner. Direct modeling of such global covariance structure is subject to
peril as it relies on global specifications. Our approach builds from local properties to global
outcomes. This representation averages over the components of spatial variation in model (1)
to produce the global covariance. This covariance function describes the overall covariance
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between points in the stream network but obscures the structure of the covariation. Under
this structure, {Z(x): x € R} is Gaussian, although the covariance structure is not stationary.
The development for alternative and more general models follows the same principles.

If we wish to predict characteristics of {Z(x) : x € R}, then we need to express our
uncertainty about the unknown dependence structure through 6 and the mean through .
Under a simple Bayesian formulation (see Handcock and Stein 1993), we can specify the
prior as

pr(e, B, 6) o pr(0)/a
so that the marginal posterior distribution:
pr(6 | Z) ocpr(6) - |Kg|~'2|F' Ky FI~'2a(6)~ -2
captures our knowledge about 8. Here

@®) = (1/N)Z - FB®) K, (Z - FB(©))
and
B(O) = (F/K;F)*IF/KO_IZ
are the maximum likelihood estimators (MLEs) of @ and 8 conditional on 6, F={f; (x;)}nxq»
and Kg = {Kg(xi, x;j)}nxn. The prior for 8, pr(f), can be very flexible and capture expert
knowledge if available. In the application of this paper we presume little explicit knowledge
and a simple structure. Explicitly, we presume A, and A, have Gamma distributions, and o
has an inverse x distribution. We also presume prior independence among them.

To predict the SCDF for a given watershed, F(z), say, we need to express our under-
standing of Z(x) at each point x € R. Operationally choose a large finite subset of locations
V1, ..., Uy, from the watershed as a surrogate for the continuum. For example, we could
choose a realization from a high-intensity spatial Poisson point process restricted to the
riverine system in the watershed or a design adapted for numerical integration (Owen 1994).

Let Z = {Z(x1), ..., Z(xn)} be the sample, and let Zg = {Z(v}), ..., Z(vy)} then

Z FB Kg | Hp
= | ~Nngm || = || — - —
Zy Fp Hy | Jo

It is well known that:
Zy|0,Z ~ tm(fo(e), ka(@){Jy — HéK071H9 + Bé(F’K;lF)_IB@})

pr(Zo | Z) = o pr(Zo | 6, Z)pr(6 | Z)d6o (3)
where
By=F — F'Kg~'Hy
Zo(0) = H)Kg~'Z + B)p(0)
kK =N/(N—q)
These calculations are straightforward even for large m as the conditional predictive distribu-

tion is multivariate ¢ with the appropriate covariance matrix and inversion of the covariance
matrix of Zy is not necessary. In some circumstances, it will be easier to use the formula

pr(Zo | 0, Z)pr(@ | Z)
pr(@ | Z, Zo)

pr(Zo | Z2) =
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(Besag 1989a). This avoids computing the p-dimensional integral (3) directly, but does
require the existing software code for computing pr(6 | Z) to be extended to compute
pr(0 | Z, Zo). This is typically straightforward. The posterior distribution of F(z) can then
be approximated by that of

l —_ -
F"@) = — > T(Z(wi) = 2) “

i=1

where {Z (wy), ..., Z (vy)} is a random draw from (3). The approximation can be made
arbitrarily accurate by choosing m large, and more importantly the accuracy of the approx-
imation can be easily assessed for any m. One simple approach is to draw samples directly
from pr(Zy | Z) and use (4) for a range of z values to obtain draws from posterior of F(z).
The analysis of these draws would be very useful in understanding the behavior of F(z). In
particular they can be used to define pointwise probability limits and prediction bounds for
F(z).

Example: Spatial Distribution of Fish IBI in the Gunpowder-Patapsco watershed

As an illustration, the model described in Sect. 3 has been applied to a single watershed
in Maryland on the shores of Chesapeake Bay. The location and hydrology of the watershed
are given in the Fig. 1. For simplicity, a simple contiguity neighborhood for the streams with
distance decay specified by the Matérn class of covariances and prior distributions described
by Handcock and Wallis (1994) is used. The resulting mean posterior SCDF for the fish IBI
metric is given in Fig. 2. The point prediction is smooth as the model averages over many
possible spatial dependence structures.

Fig. 1 Hydrologic detail of the Gunpowder-Patapsco watershed on the Chesapeake Bay in Maryland. The
figure provides the detail of the wadeable streams in the watershed and outlines of the surrounding watersheds.
The monitoring sites from the Maryland Biological Streams Survey are marked
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0.4

Spatial Cumulative Distribution

0.2

0.0

fish metric value [from 0-6]

Fig. 2 The mean posterior spatial cumulative distribution function for the fish IBI within the Gunpowder-
Patapsco watershed

5 Models for relative spatial distributions

Many questions of environmental justice take the form, usually implicitly, of the comparison
of distributions across different groups. For example, consider comparing the pollution levels
of an area with predominantly lower socioeconomic status to one with predominately higher
status. This is fundamentally a distributional question—how does the SCDF of the pollution
level of the lower socioeconomic area compare to that of the higher. Relative distribution
methods are designed to address these questions. We review the concepts below. A book length
treatment is given in Handcock and Morris (1999). See also the website (http://csde.washing-
ton.edu/~handcock/RelDist). This site contains software, example data-sets, manuals, and
example code.

The relative distribution is summarizes the information required for scale-invariant com-
parisons between two distributions. It appears, explicitly and implicitly, in many independent
research areas (Parzen 1977, 1992; Cwik and Mielniczuk 1993; Holmgren 1995; Li et al.
1996). Recently it has been used to study changes in environmental characteristics over time
and between demographic groups. For example, Morris et al. (1994) study changes in yearly
earnings by race and gender from 1967 to 1987. Bernhardt et al. (1995) used it, and its exten-
sions, to take a closer look at the shrinking gender gap in earnings. Handcock and Morris
(1998) use the relative distribution to study the changes in the distribution of yearly hours
worked between 1975 and 1993. In each of these areas of study the pattern of the changes
has made it necessary to study differences beyond the usual differences in the summary
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measures of location and variation (Butler and McDonald, 1987; Karoly, 1993). Additional
applications are given in Handcock and Morris (1999).

5.1 The relative SCDF and the relative spatial density

Let Fj be the SCDF of an environmental indicator on a reference area and F be the corre-
sponding SCDF for a comparison area. Typically the reference area is the measurement for a
separate area or the same area during an earlier time period. However the reference distribu-
tion can be from a minimally disturbed area where it represents a nominally “pristine” state.
Indeed, it may even be a hypothetical distribution based on an environmental standard or
regulation. The objective is to study the differences between the distributions of the environ-
mental indicator in the reference and comparison areas. Let Yo ~ Fpand Y ~ F. We suppose
that Fp and F are absolutely continuous with common support. The grade transformation of
Y to Yy is defined as the random variable (Cwik and Mielniczuk 1989):

R = Fy(Y) 5)

R is obtained from Y by transforming it by the function Fy and so it is continuous with
outcome space [0, 1]. As R measures the relative rank of ¥ compared to Yy, we refer to the
distribution of R as the relative spatial distribution. We can express the CDF of R as

G(r) = F(Fy'(r) 0<r<l1 (©6)

where r represents the proportion of values, and F, ') = infy{y | Fo(y) > r}isthe
quantile function of Fy. The probability density function (PDF) of R is

f(Fg )
ry=-—
T (R o)

If the two distributions are identical then the CDF of the relative distribution is a 45° line
and the PDF of the relative distribution is the uniform PDF.

The relative distribution is an intuitively appealing approach to the comparison problem
because both the density and the CDF have clear, simple interpretations. The relative spatial
density g(r) can be interpreted as the ratio of the comparison population to the reference
population at a given level (FO_1 (r)). The relative spatial CDF G (r) can be interpreted as the
proportion of the comparison area whose attribute lies below the pth quantile of the reference
area. More technically: a proportion G (r) of the Y are below the values of a proportion p of
Yo.

Inference for the relative distribution when the available information takes the form of
independent sample from both reference and comparison distributions is reviewed in Hand-
cock and Morris (1999). As we have the joint posterior for Fp and F, we can use (6) and (7)
to produce the Bayesian inference for both the relative SCDF and the relative spatial density.

0<r<l1 @)

Example: Comparing the Gunpowder-Patapsco and Severn watersheds

Adjacent, and upstream, from the Gunpowder-Patapsco watershed is the Severn watershed.
We have repeated the modeling process for Severn and compared the two watersheds in Figs. 3
and 4.

Figure 4 is the relative spatial density of the Gunpowder-Patapsco watershed to the
Severn watershed. The value of one represents the relative density if the two distributions
were identical. We can see, however, that there is a substantial difference between the shapes
of the two distributions. The fish IBIs for Gunpowder-Patapsco are over-represented in the
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Fig. 3 The relative spatial CDF of fish IBI in the Gunpowder-Patapsco watershed to the Severn watershed.
The upper and right axes is labeled in the fish IBI units
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Fig.4 The relative spatial density of fish IBI in the Gunpowder-Patapsco watershed to the Severn watershed.
The upper axis is labeled in the fish IBI units
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lower and upper quantiles of the Severn distribution. They are correspondingly under—repre-
sented in the middle 60% of the distribution. The frequency of Gunpowder-Patapsco streams
does not match that of Severn streams until about the 25% quantile and again at the 85%
quantile of the Severn distribution. These observations are not readily apparent from the
direct comparison of the SCDF for Severn with that for Gunpowder-Patapsco in Fig. 2.

The relative density enhances comparison of the distributions in two ways. Firstly, it
expresses the relative frequency in terms of a ratio, which is easier to understand both visu-
ally and numerically. Secondly, it rescales the horizontal axis so that length is equivalent to the
proportion of streams in Severn with that level of fish IBI. This facilitates direct comparisons
between the SCDFs because the two axes are now in comparable units. For example, there
are proportionally over 1.5 times as many Gunpowder-Patapsco than Severn stream-miles in
the lower decile of the Severn fish IBI distribution.

These figures demonstrate how the relative spatial distribution can aid the comparison of
distributions. This is not to suggest that they can replace the SCDF (as in Fig. 2); rather it
complements it by focusing on those characteristics of the individual distributions essential
for scale-free comparison. Figures 2 and 3 provide absolute and relative description of envi-
ronmental condition respectively. Figure 4 provides a relative description on a scale that may
be more interpretable for most statisticians.

6 Further issues and extensions

It is tempting to develop a spatial-temporal model for indicators in the region. However the
number of monitoring site revisits is small so that the amount of information on the temporal
patterns is small. We note that the modeling framework can be extended in a straightforward
fashion to include simple temporal effects.

A model-based approach such as the one described here coupled with a broad range of
dependence structures can capture a wide range of spatial variation. However, in most cases
the underlying random field can not be assumed to be Gaussian. The conditional distribution
of Z(x) may be Gamma (Best et al. 1998) or even discrete. We may also wish to consider
derived measures of exceedences useful for risk assessment e.g.,

Ex)=Z((Z(x) <L) for given L (8)

where L is a pre-specified limit on the measure. The generalized linear spatial models
approach of Diggle et al. (1998) greatly broaden the form of spatial variation that can be
represented by the framework described here. Theirs is a fully Bayesian approach that can
also be implemented via MCMC methods. The central idea is that the observed indicator
E(x), say, satisfies a generalized linear model conditional on Z(x). In essence we are adding
another layer to the top of the hierarchal model. Extensions such as these improve on the
simple model described here at the expense of some computational complexity.

The watershed effects can also be modeled hierarchically to investigate the effects of
political divisions. The most direct example is the state (or states) that the watershed resides
in. While the watershed does not necessarily respect state boundaries, state and local govern-
ment regulations may directly influence the environmental condition and human activities.
Hence the relative comparison of state-level effects is a very important way of assessing the
role of institutions at the state level. This approach can be applied to other political division
such as labor-market regions and counties. It is also natural to consider extensions to more
sophisticated models for misaligned data, such as those of Mugglins and Carlin (1998).

@ Springer



282 Environ Ecol Stat (2007) 14:267-284

Acknowledgements We would like to thank James McDermott (Penn State University), Tony Olsen and
Barbara Rosenbaum (EPA-Corvallis) for help with computing and data compilation issues. This research
was supported by the Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR)
program Grant # R-82867401-0.

References

Anselin L, Florax R (1995) New directions is spatial econometrics. Springer-Verlag, Berlin

Bernhardt AD, Morris M, Handcock MS (1995) Women’s gains or men’s losses? A closer look at the shrinking
gender gap in earnings. Am J Sociol 101:302-328

Besag J (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion). J Roy Stat
Soc B 36:192-236

Besag J (1975) Statistical analysis of non-lattice data. The Statistician 24:179-195

Besag J (1989a) A candidate’s formula: a curious result in Bayesian prediction. Biometrika 76:183—183

Besag J (1989b) Towards Bayesian image analysis. J Appl Stat 16:395-407

Besag J, Kooperberg C (1995) On conditional and intrinsic autoregression. Biometrika 82:733-746

Besag J, York J, Molli¢ A (1991) Bayesian Image Restoration, with two applications is spatial statistics (with
discussion). Ann Inst Stat Mathemat 43:1-59

Besag J, Higdon D (1999) Bayesian analysis of agricultural field trials (with discussion). J Roy Stat Soc B
61:691-746

Bernardinelli L, Montomoli C (1992) Empirical Bayes versus fully Bayesian analysis of geographical variation
in disease risk. Stat Med 11:983-1007

Best NG, Ickstadt K, Wolpert RL (1998) Spatial Poisson regression for health and exposure data measured at
disparate resolutions. Discussion paper, 98-36, Institute of Decision Sciences, Duke University

Butler RJ, McDonald JB (1987) Interdistributional Income Inequality. J Busi Econ Stat 5:13-18

Cox LH, Piegorsch WW (1996) Combining environmental information. I: Environmental monitoring, mea-
surement and assessment. Environmetrics 7:299-308

Cox LH (1998) Workshop: statistical methods for combining environmental information. In: Nychka D, Pie-
gorsch WW, Cox LH (eds) Case studies in environmental statistics, 143—158. Lecture Notes in Statistics,
132. Springer-Verlag

Cressie NAC (1993) Statistics for spatial data. Wiley, New York

Cressie NAC (1995) Bayesian smoothing of rates in small geographic areas. J Region Sci 35:659-673

Cwik J, Mielniczuk J (1989) Estimating density ratios with application to discriminant analysis. Commun Stat
18:3057-3069

Cwik J, Mielniczuk J (1993) Data-dependent bandwidth choice for a grade density kernel estimate. Stat Prob-
abil Lett 16:397-405

Dewald T, Olsen M (1994) The EPA reach file: A national spatial data resource. U.S. Environmental Protection
Agency, Office of Water

Ecker MD, Gelfand AE (1997) Bayesian variogram modeling for an isotropic process. J Agric Biol Environ
Stat 4:347-369

Fausch KD, Lyons J, Karr JR, Angermeier PL (1990) Fish communities as indicators of environmental degra-
dation. In: Adams SM (ed) Biological Indicators of Stress in Fish, 123—144. American Fisheries Society
Symposium 8. Bethesda, Maryland

Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian Data Analysis. Chapman and Hall, London

Handcock MS (1994) Discussion of “Epidemics: Models and Data” by D. Mollison, V. Isham and B. Grenfell
(1994). J Roy Stat Soc A 157:115-149

Handcock MS (1998) Discussion of “Model-based Geostatistics” by P.J. Diggle, J. A. Tawn and R. A. Moyeed
(1998). J Roy Stat Soc C 47(3):299-350

Handcock MS (1999) Discussion of “Prediction of Spatial Cumulative Distribution Functions Using Subsam-
pling” by S. Lahiri, M. Kaiser, N. Cressie and N. Hsu (1999). J Am Stat Assoc 94(445):100-102

Handcock MS, Morris M (1998) Relative distribution methods. Sociol Methodol 28:53-97

Handcock MS, Morris M (1999) Relative distribution methods in the social sciences. Springer, New York

Handcock MS, Stein ML (1993) A Bayesian analysis of kriging. Technometrics 35(4):403—410

Handcock MS, Wallis J (1994) An approach to statistical spatial-temporal modeling of meteorological fields
(with discussion). ] Am Stat Assoc 89:368-378. rejoinder, 388-390

Handcock MS, Meier K, Nychka D (1994) Comment on “Kriging and Splines: An Empirical Comparison of
their Predictive Performance” by G. M. Laslett. ] Am Stat Assoc 89:401-403

@ Springer



Environ Ecol Stat (2007) 14:267-284 283

Handcock MS, Rendall MS, Huovilainen SM (2000) Combining survey and population data on births and
family. Demography 37(2):187-192

Handcock MS, Rendall MS, Cheadle JE (2005) Improved regression estimation of a multivariate relationship
with population data on the bivariate relationship. Sociol Methodol 35:303-346

Heimbuch D, Seibel J, Wilson H, Kazyak P (1998). A multi—year lattice sampling design for Maryland—Wide
fish abundance estimation. Presented at the “Conference on Environmental Monitoring Surveys over
Time,” April 20-22, 1998, University of Washington

Herlihy AT, Larsen DP, Paulsen SG, Urquhart NS, Rosenbaum BJ (2000) Designing a spatially balanced, ran-
domized site selection process for regional stream surveys: The EMAP mid-atlantic pilot study. Environ
Monitor Assess 63:95-113

Holmgren EB (1995) The P-P plot as a method for comparing treatment effects. ] Am Stat Assoc 90:360-365

Jones KB, Ritters KH, Wickham JD, Tankersley RD, O’Neill RV, Chaloud DJ, Smith ER, Neale AC
(1997) An ecological assessment of the United States mid-atlantic region: a landscape atlas. Environ-
mental Protection Agency: EPA/600/R-97/130 (http://www.epa.gov/emap/html/pubs/docs/groupdocs/
landecol/atlas/ma_atlas.html).

Karoly LA (1993) The trend in inequality among families, individuals, and workers in the United States: A
twenty-five year perspective. In: Danziger S, Gottschalk P (ed) Uneven tides: rising inequality in america.
Russell Sage, New York, NY, pp 19-97

Karr JR, Dudley DR (1981) Ecological perspectives on water quality goals. Environ Manage 5:55-68

Karr JR, Fausch, KD, Angermeier PL, Yant PR, Schlosser 1J (1986) Assessing biological integrity in running
waters—a method and its rationale: Illinois Natural History Survey Special Publication Number 5, 28 p.

Kelsall JE, Wakefield JC (2002) Modelling spatial variation in disease risk: a geostatistical approach. J Am
Stat Assoc 97:692-701.

Kepner WG, Jones KB, Chaloud DJ, Wickham JD (1995) Mid-Atlantic landscape Indicators Project Plan.
EPA/620/R-95/003. Washington, D.C.: U.S. Environmental Protection Agency

Lahiri S, Kaiser M, Cressie NAC, Hsu N (1999) Prediction of spatial cumulative distribution functions using
subsampling. ] Am Stat Assoc 94(445):100-102

Lazorchak JM, Klemm DL, Peck DV (eds) (1998) Environmental monitoring and assessment program sur-
face waters: field operations and methods for measuring the ecological condition of wadeable streams.
EPA/620/R-94/004F. Washington, D.C.: U.S. Environmental Protection Agency

Larsen DP, Christie SJ (eds) (1993) EMAP-Surface Waters 1991 Pilot Report. EPA/620/R-93/003. Corvallis,
Oregon: U.S. Environmental Protection Agency

Li G, Tiwari RC, Wells MT (1996) Quantile comparison functions in two-sample problems, with application
to comparisons of diagnostic markers. J Am Stat Assoc 91:689-698

McLaughlin DK, Handcock MS (1999) Spatial statistical models for the distribution of income inequality in
the United States, 1980 to 1990. Presented at the Population Association of America Annual Meetings,
March 26, 1999

Messer JJ, Linthurst RA, Overton WS (1991) An EPA program for monitoring ecological status and trends.
Environ Monitor Assess 17:67-78

Molli¢ A, Richardson S (1991) Empirical Bayes estimates of cancer mortality rates using spatial models. Stat
Med 10:95-112

Moller J (1998) Log Gaussian cox processes. Scand J Stat 25:451-482

Morris M, Bernhardt AD, Handcock MS (1994) Economic inequality: new methods for new trends. Am Sociol
Rev 59:205-219

Mugglin AS, Carlin BP (1998) Hierarchical modeling in geographic information systems: population inter-
polation over incompatible zones. J Agric Biol Environ Stat 3:111-130

Mugglin AS, Carlin BP, Gelfand AE (2000) Fully Model Based Approaches for Spatially Misaligned Data. J
Am Stat Assoc 95:877-887

Mugglin AS, Carlin BP, Zhu L, Conlon E (1999) Bayesian areal interpolation, estimation, and smoothing: an
inferential approach for geographic information systems. Environ Plann Stat 31:1337-1352

Owen A (1994) Lattice sampling revisited: Monte Carlo variance of means over randomized orthogonal arrays.
Ann Stat 22:930-945

Parzen E (1977) Nonparametric statistical data science: A unified approach based on density estimation and
testing for ‘white noise’. Technical Report 47, Statistical Sciences Division, State University of New
York at Buffalo, Buffalo, NY

Parzen E (1992) Comparison change analysis. In: Saleh A (ed) Nonparametric Statistics and related topics.
Elsevier, Holland, pp 3-15

Piegorsch WW, Cox LH (1996) Combining environmental information. II: Environmental epidemiology and
toxicology. Environmetrics 7:309-324

@ Springer



284 Environ Ecol Stat (2007) 14:267-284

Raftery AE, Banfield JD (1991) Stopping the Gibbs sampler, the use of morphology, and other Issues in spatial
statistics. Ann Inst Stat Mathemat 43:1-59

Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The River Continuum concept. Can
J Fish Aquat Sci 37:130-137

U.S. Environmental Protection Agency. Office of Environmental Justice (1993) Serving A Diverse Society:
EPA’s Role in Environmental Justice. EPA/200/F-93/001. Washington, D.C.: U.S. Environmental Pro-
tection Agency

Gotway CA, Young LJ (2002) Combining incompatible spatial data. J] Am Stat Assoc 97(458):632-648

Zimmerman DL, Harville DA (1991) A Random field approach to the analysis of field-plot experiments and
other spatial experiments. Biometrics 47:223-239

Biographical sketches

Mark S. Handcock is a Professor of Statistics, Department of Statistics, University of Washington, Seat-
tle. He works in the fields of spatial statistics and inference for stochastic processes. He also works on the
development of statistical models for the analysis of social network data, spatial processes and demography.
Recent applications include models for combining information from demographic surveys and population-
level information (http://www.stat.washington.edu/handcock). He received his B.Sc. from the University of
Western Australia and his Ph.D. from the University of Chicago. He is a member of the Center for Statistics
and the Social Sciences, the Center for Studies in Demography and Ecology and the National Research Center
for Statistics and the Environment.

@ Springer



	Model-based combination of spatial informationfor stream networks
	Abstract
	Introduction
	Specific evaluation of ecological indicators of streams
	The study area: The United States Mid-Atlantic region
	Sources of information on the Mid-Atlantic region combined
	Indicators of environmental condition
	Methods for combining information from multiple surveys
	Inferential procedures
	Models for spatial cumulative distributions
	Models for relative spatial distributions
	The relative SCDF and the relative spatial density
	Further issues and extensions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




