This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ANOMALOUS CONTRAST FROM SHOCKLEY PARTIALS

P. C. J. Gallagher, J. Washburn and G. Thomas

March, 1966
ANOMALOUS CONTRAST FROM SHOCKLEY PARTIALS

P. C. J. Gallagher, J. Washburn and G. Thomas

Inorganic Materials Research Division, Lawrence Radiation Laboratory,
and Department of Mineral Technology, College of Engineering
University of California, Berkeley, California

March, 1966

In face centered cubic crystals intrinsic and extrinsic faulting
may readily be observed in low stacking fault energy materials and has
also been recognized in materials [1] for which the stacking fault
energy has a relatively high value, \(\sim 20 \text{ ergs/cm}^2 \). In the case of extrinsic-
intrinsic node pairs a cross-linking dislocation often forms leading
to the presence of a Shockley partial separating the intrinsically and
extrinsically faulted regions. Both node pairs and a new extrinsic-
intrinsic fault pair configuration, which also has a Shockley partial
separating the extrinsic and intrinsic faults, are described more fully
in [2], in which reference was made to contrast anomalies which arise
from such dislocations. Normally, Shockley partials (for which \(\mathbf{b} = 1/6 \ \langle 112 \rangle \)) are visible when \(\mathbf{g} \cdot \mathbf{b} = \pm 2/3 \) and invisible for \(\mathbf{g} \cdot \mathbf{b} = \pm 1/3 \),
where \(\mathbf{g} \) is the operative reflection [3]. As reported in [2], the Shockley
partial separating extrinsic and intrinsic faults is visible for \(\mathbf{g} \cdot \mathbf{b} = \pm 1/3 \) and invisible for \(\mathbf{g} \cdot \mathbf{b} = \pm 2/3 \).

Contrast anomalies also exist when Frank partials separate extrinsic
and intrinsic faults, and such a configuration arises in the double
faulted loops reported by [4]. Calculations for the latter case [5]
reveal that when allowance is made for the displacement vectors of the
fault and of the partial dislocation (\(\mathbf{b} \)) the phase factor determining
the contrast is \(\Delta \phi = 3\pi \mathbf{g} \cdot \mathbf{b} \) rather than the usual \(\Delta \phi = 2\pi \mathbf{g} \cdot \mathbf{b} \), and that the same result is also obtained in the case of a Shockley partial.

Complete experimental verification of this prediction has been obtained in the present work for the case of a Shockley partial separating extrinsic and intrinsic faults. The fault pairs A and B illustrated for five different reflecting conditions in Fig. 1 are of the type described in [2] and consist of three parallel Shockley partials of the same Burgers vector. In Table 1 the phase factors applicable to the center partial in each fault pair, \(\Delta \phi_A = 3\pi \mathbf{g} \cdot \mathbf{b}_A \) and \(\Delta \phi_B = 3\pi \mathbf{g} \cdot \mathbf{b}_B \), are listed. Background intensity is expected for \(\Delta \phi = 0 \) or \(\pm 2\pi \), and dark contrast for \(\Delta \phi = \pm \pi \) or \(\pm 3\pi \).

A comparison of Fig. 1 and Table 1 shows that in all cases the experimental results are in accord with the contrast calculated for a phase factor of \(3\pi \mathbf{g} \cdot \mathbf{b} \).

ACKNOWLEDGMENT

This report was prepared as part of the activities of the Inorganic Materials Research Division of the Lawrence Radiation Laboratory of the University of California, Berkeley, and was done under the auspices of the U. S. Atomic Energy Commission.

FIGURE CAPTION

Figure 1. Extrinsic-intrinsic fault pairs (A,B) observed under 5 different reflecting conditions.
REFERENCES

1. P. C. J. Gallagher and J. Washburn, to be published.

5. W. J. Tunstall and P. J. Goodhew, to be published.
Predicted and Observed Contrast for the Partials

Separating Extrinsic and Intrinsic Faults in Figure 1.

Foil Normal [110] Faults in (11̅1) Plane \(\Delta \phi = 3\pi \cdot \mathbf{g} \cdot \mathbf{b} \)

<table>
<thead>
<tr>
<th>Figure</th>
<th>(\mathbf{g})</th>
<th>Fault Pair A((\mathbf{b}_A = 1/6[12\bar{1}]))</th>
<th>Fault Pair B((\mathbf{b}_B = 1/6[21\bar{1}]))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(\bar{1}11)</td>
<td>(2\pi) background</td>
<td>(\pi) dark</td>
</tr>
<tr>
<td>b</td>
<td>002</td>
<td>(\pi) dark</td>
<td>(\pi) dark</td>
</tr>
<tr>
<td>c</td>
<td>(\bar{2}20)</td>
<td>(3\pi) dark</td>
<td>(3\pi) dark</td>
</tr>
<tr>
<td>d</td>
<td>(\bar{1}1\bar{3})</td>
<td>0 background</td>
<td>(3\pi) dark</td>
</tr>
<tr>
<td>e</td>
<td>(\bar{1}13)</td>
<td>(3\pi) dark</td>
<td>0 background</td>
</tr>
</tbody>
</table>
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.