Title
HIGH-FIELD MAGNET DEVELOPMENT ANALYSIS. CONDUCTOR POSITION ERRORS DUE TO FRICTION, PART I

Permalink
https://escholarship.org/uc/item/650387gr

Author
Meuser, Robert B.

Publication Date
1979-11-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
An often used magnet design and construction technique involves winding the conductors into an annular form, then pushing them into place by applying a force to one edge, and finally baking the coil to set the resin. Ideally the conductors end up with equal compressive forces and equal spacing. But friction between the inside of the annular form and the coil makes the compressive force less at the fixed end than at the pushed end, and results in unequal conductor spacings, and in turn distortion of the magnetic field.

The effect of friction on conductor position aberrations is easily calculated, and an analysis is presented here. The effect of conductor position aberrations on magnetic field aberrations is a bit more difficult to calculate, and is deferred.
The dimensions and the forces per unit dimension perpendicular to the paper are as illustrated; \(\mu \) is the coefficient of friction.

Consideration of equilibrium of the element in radial and circumferential directions yield, respectively:

\[
\sigma_0 h (\frac{1}{2} d\theta) - (\sigma_0 + d\sigma_0) h \frac{1}{2} d\theta - \mu \sigma_0 a d\theta = 0
\]

or \(\sigma_0 h = \sigma_r a \) (1)

\[
\sigma_0 h - (\sigma_0 + d\sigma_0) h + \mu \sigma_0 a d\theta = 0
\]

or \(h d\sigma_0 = \mu \sigma_0 a d\theta \) (2)

Upon eliminating \(\sigma_r \) between Eqs. 1 and 2 we get

\[
\frac{d\sigma_0}{\sigma_0} = \mu d\theta
\]

Upon integration, and subject to the condition that \(\sigma = \sigma_0 \) at \(\theta = \alpha \), we get

\[
\sigma_0 = \sigma_0 e^{-\mu (\alpha - \theta)}
\]
A few values might be amusing:

\[\sigma / \sigma_0 \]

\[\mu \rightarrow 0.01 \quad 0.02 \quad 0.05 \quad 1 \quad 2 \quad 5 \quad 1 \]

\[\theta \downarrow \]

\(30^\circ \) | 0.995 | 0.990 | 0.974 | 0.949 | 0.901 | 0.770 | 0.592 \\
\(60^\circ \) | 0.990 | 0.979 | 0.949 | 0.900 | 0.811 | 0.592 | 0.351 \\
\(90^\circ \) | 0.984 | 0.969 | 0.924 | 0.854 | 0.730 | 0.456 | 0.205

... Then again, they might not.

The position aberrations resulting from the non-uniformity of the compressive stress depend on the shape of the stress-strain curve for the conductor. A solution for a nice decile linear stress-strain curve would be pretty useless since the curve for typical conductors is pretty curvy. So we will represent the stress-strain curve by a power series:

\[\varepsilon = C_1 \sigma + C_2 \sigma^2 + C_3 \sigma^3 + \ldots + C_n \sigma^n \quad (5) \]

(\(\varepsilon \) is the strain, \(+ \) is compression, and \(\sigma \) is the compressive hoop stress formerly called \(\sigma_0 \)).

The circumferential displacement at any position \(\theta \) from its unstressed position is:

\[\delta = \delta_0 \int_0^{\theta} \varepsilon \, d\theta \quad (\text{+ is clockwise}) \quad (6) \]

Upon eliminating \(\varepsilon \) and \(\sigma \) between (3), (4), and (5) and integrating we obtain

\[\delta = \frac{\delta_0}{\mu} \sum_{n=1}^{\infty} C_n \sigma_0^i \left(e^{-i\mu(x-\theta)} - e^{-i\mu x} \right) / i \quad (7) \]
A + $\theta = \alpha$, s is

$$s_0 = \frac{a}{\mu} \sum_{i=1}^{\infty} c_i \alpha (1 - e^{-i\mu \alpha})/i$$ \hspace{1cm} (8)

If the friction μ were zero the displacement would be

$$s' = s_0 \frac{\theta}{\alpha}$$ \hspace{1cm} (9)

so the position aberration, Δ, is simply

$$\Delta = s' - s$$ \hspace{1cm} (10)

(Δ is the linear position error of a conductor in the circumferential direction, $+$ is counter-clockwise.)

In a typical application, we know the displacement we need at the pushed end where $\theta = \alpha$. So using Eq. 8, letting $\theta = \alpha$ and knowing s_0, we solve for s_0 by iteration or other sneaky means. We then plug this into Eq. 7 to evaluate s at any θ, get the corresponding s' from Eq. 9, and then get Δ from Eq. 10.

If there are no more than two terms in the stress-strain equation, Eq. (5) — and two should be enough for Government work — then we can get a closed-form solution, as follows:

$$\sigma_0 = \left(\sqrt{B^2 + 4AC} - B \right) / 2A$$

where

$$A = \frac{1}{2} c_2 (1 - e^{-2\mu \alpha})$$

$$B = c_1 (1 - e^{-\mu \alpha})$$

$$C = \mu s_0 / \alpha$$
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.