Title
Past vegetation changes in the Brazilian Pantanal arboreal-grassy savanna ecotone by using carbon isotopes in the soil organic matter

Permalink
https://escholarship.org/uc/item/6597f0q6

Journal
Global Change Biology, 1(3)

ISSN
1354-1013

Authors
VICTORIA, REYNALDOLUIZ
FERNANDES, FERNANDO
MARTINELLI, LUIZANTONIO
et al.

Publication Date
1995-06-01

DOI
10.1111/j.1365-2486.1995.tb00018.x

License
CC BY 4.0

Peer reviewed
Past vegetation changes in the Brazilian Pantanal arboreal–grassy savanna ecotone by using carbon isotopes in the soil organic matter

REYNALDO LUIZ VICTORIA*, FERNANDO FERNANDES†, LUIZ ANTONIO MARTINELLI*, MARISA DE CÃOSSIA PICCOLO*, PLINIO BARBOSA DE CAMARGO* and SUSAN TRUMBORE‡

*Centro de Energia Nuclear na Agricultura, Av. Centenário 303, CEP 13416-000, Piracicaba, SP, Brazil, †Centro de Pesquisa Agropecuária do Pantanal, Embrapa, Corumbá, MT, Brazil, ‡University of California at Irvine, Department of Earth System Science, Irvine, CA, USA

Abstract

Measurements of the organic carbon inventory, its stable isotopic composition and radiocarbon content were used to deduce vegetation history from two soil profiles in arboreal and grassy savanna ecotones in the Brazilian Pantanal. The Pantanal is a large floodplain area with grass-dominated lowlands subject to seasonal flooding, and arboreal savanna uplands which are only rarely flooded. Organic carbon inventories were lower in the grassy savanna site than in the upland arboreal savanna site, with carbon decreasing exponentially with depth from the surface in both profiles. Changes in 13C of soil organic matter (SOM) with depth differed markedly between the two sites. Differences in surface SOM 13C values reflect the change from C$_3$ to C$_4$ plants between the sites, as confirmed by measurements of 13C of vegetation and the soil surface along a transect between the upland closed-canopy forest and lowland grassy savanna. Changes of 13C in SOM with depth at both sites are larger than the 3–4 per mil increases expected from fractionation associated with organic matter decomposition. We interpret these as recording past changes in the relative abundance of C$_3$ and C$_4$ plants at these sites. Mass balances with 14C and 13C suggest that past vegetational changes from C$_3$ to C$_4$ plants in the grassy savanna, and in the deeper part of the arboreal savanna, occurred between 4600 and 11 400 BP, when major climatic changes were also observed in several places of the South American Continent. The change from C$_4$ to C$_3$, observed only in the upper part of the arboreal savanna, was much more recent (1400 BP), and was probably caused by a local change in the flooding regime.

Keywords: Brazil, Pantanal, radiocarbon, wetland, savanna, soil organic matter, stable carbon isotope, vegetation change

Received 14 November 1994; revision received 28 February 1995; accepted 6 May 1995

Introduction

The Pantanal, with an area of c. 140 000 km2, is one of the largest floodplains in the world. It is a large depression formed at the end of the Cretaceous and filled by sediments deposited mainly by the Paraguay river and its major tributaries, especially during the Quaternary (Moreira 1977; Moreira Franco & Pinheiro 1982; Ab'Saber 1988). It is located at the centre of South America, bordering the main physiographic zones of the continent, with the Amazon region to the north, the Cerrado to the east and the Chaco to the west. Due to the alternation of dry and wet climates that occurred at the end of the Pleistocene and during the Quaternary (Alvarenga et al. 1984), a mixed vegetation pattern was established, with species characteristic of the border areas (Amazon, Cerrado and Chaco) and with very few endemic species (Junk 1993). Drier periods also fostered the invasion of xeric species from the Caatinga of NE Brazil (Ab'Saber 1988). The distribution of the vegetation in the landscape is a function of the topography, which also governs the pattern of flooding. Consequently, small changes in the
topography lead to a mosaic of habitats (Junk 1993), supporting numerous species of plants and animals, in one of the most biodiverse ecosystems of the world. The major vegetation type in the Pantanal is the savanna, in which different sub-units are established as a function of the local topography/hydrology (Loureiro et al. 1982). Plant communities may be classified based on the relative proportion of C4 (grasses) and C3 plants. The low-land areas are dominated by C4 grasses forming the so-called grassy savanna. Higher elevation areas have an increasing proportion of C3 plants with the progression from park savanna to open canopy arboreal savanna. Closed canopy arboreal savanna, formed almost exclusively by C3 plants, dominates the highest elevations.

Spatial distributions of these vegetation are expected to be dynamic in a system like the Pantanal, both because of periodic flooding, and past climate changes.

In this paper we deduce present and past changes in the vegetation composition of a typical savanna of the south-eastern part of the Pantanal, using 13C isotopic composition and radiocarbon dating of soil organic matter (SOM). The bases for the use of the 13C technique are: (i) the isotopic composition of the SOM is similar to the isotopic composition of the vegetation cover from which it is derived, and (ii) there is a large difference in the isotopic composition of C3 and C4 plants (Vitorello et al. 1989; Martin et al. 1990; Ambrose & Sikes 1991; Mariotti & Peterschmitt 1994). Generally, the SOM in deeper layers of a soil is enriched in 13C (Flexor & Volkoff 1977; Volkoff & Cerri 1987; Guillet et al. 1988; Desjardins et al. 1991). Depending on the degree of this enrichment two basic processes can explain the observed trends: (i) increases smaller than 3-4% are likely due to organic matter decomposition, which preferentially removes 12C, enriching deeper, older soil layers in 13C; and (ii) larger values are likely the result of changes from C4 to C3 vegetation. Radiocarbon dating is used here to identify past vegetation change.

We collected samples from soil pits dug in grass and in closed canopy arboreal savannas. Virtually no grasses were present in the arboreal savanna. The absence of significant change in the stable carbon isotopic composition with depth, for any of the pits, would indicate that the system has been stable for the period over which the soil has formed. This period is determined from the radiocarbon age of SOM in the profile. A 13C enrichment with depth in the arboreal savanna, larger than the enrichment of 3-4% that typically results in decomposition, would indicate that the system evolved from a grassy savanna. Alternatively, a 13C depletion with depth in the grassy savanna, would suggest that an arboreal savanna was present before being replaced by C4 grassy savanna.

Material and methods

Study area

The Pantanal may be divided into 10 different geomorphological regions (Adamo 1982). The Fazenda Nhuminirim (18° 59'S and 56° 39'W), our sampling station, is situated in the Nhecolândia region. The climate of the region is classified Aw, after the Köppen system. The annual average temperature is 25°C, and the annual average rainfall is 1280 mm. The dry season extends from May to September and the rainy season from October to April. The soil was classified as Areia Quartzzoza according to the Brazilian classification, equivalent to an Inceptisol in the American classification system.

The samples were collected in a typical savanna complex. Grassy savanna, formed almost exclusively by C4 grasses, dominated the lower elevation terrain, which is periodically inundated. C3 plants as a proportion of the vegetation increased with elevation, to the exclusively C3 closed arboreal savanna, situated in higher terrain c. 1.5 m above the grassy savanna and so avoiding periodical flooding. Two soil sampling procedures were used. The first was a 950 m transect from the grassy to the arboreal savanna, where surface soil samples (0–20 cm) were collected every 50 m. The second was performed in soil pits dug in both the grassy and the arboreal savanna. Samples were collected at 5 cm intervals from the surface to 20 cm deep, and then at 10 cm intervals to the bottom of the pits (110 cm in the grassy savanna and 170 cm in the arboreal savanna). Following a botanical survey of the area (Pott et al. 1986) leaves from the most common plants in the grassy savanna, in the forest and in the border of the ecotone were collected for 13C determination. In the arboreal savanna leaves were collected from the upper canopy (10–15 m) and also from the ground flora.

Analytical methods

Large roots and debris were separated from the soil using a 2 mm sieve. The sandy texture of the soil allowed manual separation of small roots by hand. Carbon concentrations were determined in a CHN analyser (Perkin Elmer, 2400 CHN). Sample treatment for isotope analysis was done through combustion with CuO in evacuated Pyrex tubes. Isotope measurements were performed with a Finnigan DELTA-E mass spectrometer fitted with double inlet and double collector systems. Results are expressed in δ13C relative to the PDB standard, defined as:

$$\delta^{13}C = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000,$$

where R_{sample} and R_{standard} are the ratio ^{13}C:^{12}C of the
sample and standard, respectively. Samples were analysed at least in duplicate with a maximum difference of 0.3 % between replicates.

14C activity was measured in an accelerator mass spectrometer at the Lawrence Livermore Laboratory, USA (Southon et al. 1992; Trumbore 1993). The conventional radiocarbon age, expressed as years before present (8P) ± standard-deviation, called Apparent Mean Residence Time (AMRT), was estimated using the following equation, assuming a 14C half-life of 5568 years (Stuiver & Polach 1977):

$$t = -8033 \ln \left(\frac{A_{\text{sample}}}{A_{\text{standard}}} \right),$$

(2)

where t is the radiocarbon age expressed in years 8P, and A_{sample} and A_{standard} are the radiocarbon activity of the sample and standard, respectively.

For the 14C mass balance presented in the Discussion section, the 14C activity was expressed as Δ^{14}C per mil, estimated according to the following equation (Stuiver & Polach 1977):

$$\Delta^{14}$C ($\%o$) = $\left(\frac{A_{\text{sample}}}{A_{\text{standard}}} - 1 \right) 1000,$$

(3)

Carbon stocks in soils were calculated by multiplying the respective concentrations by soil density and by soil depth. Soil density was calculated by collecting a mass of soil in a small cylinder of known volume. After drying to constant mass, the density was calculated.

Results

Soil organic carbon concentration and stock

Organic carbon concentrations were very low in both areas, and showed the typical decrease with depth. For any particular depth the concentration was higher in the arboreal than in the grassy savanna (Fig. 1). The higher carbon stocks in the arboreal savanna, resulted from a higher carbon concentration, since the soil densities from both areas were not significantly different. The carbon stock to 1 m depth was equal to 3.4 kgC m$^{-2}$ in the arboreal savanna and equal to 2.0 kgC m$^{-2}$ in the grassy savanna.

Carbon composition of plant species

The 13C values of the plant species collected along the transect are shown in Table 1. The dominant grass in the grassy savanna, Elyonurus miticus, showed a value typical of C$_4$ plants (-12.4 %). The trees from the border area showed an average 13C value of -28.8±0.9 % ($n = 10$), which is significantly less negative than the average found in the upper canopy (-30.3±0.9 %, $n = 11$) and

in the forest floor (-31.1±1.5 %, $n = 6$) vegetation. This enrichment was also present in the tropical environment (van der Merwe & Medina 1989; Martinelli et al. 1991). The small number of forest floor vegetation samples, together with the high variance of the data, may explain this lack of significance. Also, the arboreal savanna at this site was more open with only two strata, in comparison to forest of higher rainfall areas, with less potential for recycling of C within the canopy.

Carbon isotopic composition of soil organic matter along the transect

The variation of 13C along the transect followed the anticipated pattern: as the proportion of C$_3$ to C$_4$ plants increased, the values became more negative, reflecting the increasing contribution of C$_3$ derived organic matter in the SOM (Fig. 2). Two major changes were observed in the transect, the first after 350 m, where the 13C values dropped from -17 to -20 %, and the second at 600 m, where a drop from -20 to -27 % occurred. These changes are the results of changes in vegetation cover. The first drop indicates the transition from grassy savanna to park savanna, and the second the transition from park to arboreal savanna.

The average 13C values for soil surface samples collected in the grassy savanna (-17.2±0.6 %, $n = 7$) are within the normal range for this type of vegetation cover. The average value of 13C found in the literature for samples collected from surface soils covered with C$_4$ grasses was -16.1±2.2 % (Dzurec et al. 1985; Mondenesi et al. 1986; Schwartz et al. 1986; Volkoff & Cerri 1987; Martin et al. 1990; Desjardins et al. 1991; McPherson et al. 1993; Wang et al. 1993; Mariotti & Peterschmitt 1994; Trouvé et al. 1994).

Variation in carbon isotopic composition with soil depth and radiocarbon dating of the soil

The variations in 13C with depth, for both areas, were larger than the expected from fractionation during decomposition, suggesting that vegetation changes occurred in the past (Fig. 3). In the grassy savanna the 13C became progressively more negative with depth, suggesting that a progressive replacement of C$_3$ by C$_4$ plants had occurred.
Table 1 \(\delta^{13}C \) values of most common plant species (Pott et al. 1986) in the transect from grassy savanna to arboreal savanna.

<table>
<thead>
<tr>
<th>Site</th>
<th>Species</th>
<th>(\delta^{13}C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassy savanna</td>
<td>Elyonurus miticus</td>
<td>-12.4</td>
</tr>
<tr>
<td>Transition</td>
<td>Curatella americana</td>
<td>-29.4</td>
</tr>
<tr>
<td></td>
<td>Cordia glabrata</td>
<td>-27.9</td>
</tr>
<tr>
<td></td>
<td>Fagara hassleriana</td>
<td>-28.8</td>
</tr>
<tr>
<td></td>
<td>Andira paniculata</td>
<td>-29.1</td>
</tr>
<tr>
<td></td>
<td>Sapium haematopuspermum</td>
<td>-29.7</td>
</tr>
<tr>
<td></td>
<td>Tabebuia caraiba</td>
<td>-26.5</td>
</tr>
<tr>
<td></td>
<td>Simarouba versicolor</td>
<td>-28.8</td>
</tr>
<tr>
<td></td>
<td>Caryocar brasiliense</td>
<td>-28.6</td>
</tr>
<tr>
<td></td>
<td>Luehea panuculata</td>
<td>-29.2</td>
</tr>
<tr>
<td></td>
<td>Byrsonima coccolobifolia</td>
<td>-29.7</td>
</tr>
<tr>
<td></td>
<td>Trichilia elegans</td>
<td>-30.2</td>
</tr>
<tr>
<td></td>
<td>T. elegans</td>
<td>-30.7</td>
</tr>
<tr>
<td></td>
<td>Pouteria ramiiflora</td>
<td>-31.7</td>
</tr>
<tr>
<td></td>
<td>Copaifera martii</td>
<td>-31.1</td>
</tr>
<tr>
<td></td>
<td>Sterculia striata</td>
<td>-28.9</td>
</tr>
<tr>
<td></td>
<td>Vitex symosa</td>
<td>-33.8</td>
</tr>
<tr>
<td></td>
<td>Attalea phalerata</td>
<td>-30.1</td>
</tr>
<tr>
<td></td>
<td>Protium heptaphillum</td>
<td>-32.7</td>
</tr>
<tr>
<td></td>
<td>Rhamdium elaocarpum</td>
<td>-30.4</td>
</tr>
<tr>
<td></td>
<td>Ocotea suanecens</td>
<td>-29.8</td>
</tr>
<tr>
<td></td>
<td>Sapium haematopuspermum</td>
<td>-30.6</td>
</tr>
<tr>
<td></td>
<td>Suilax sp.</td>
<td>-30.6</td>
</tr>
<tr>
<td></td>
<td>Estromonium fraxinfolium</td>
<td>-30.1</td>
</tr>
<tr>
<td></td>
<td>Alibertia sessilis</td>
<td>-31.1</td>
</tr>
<tr>
<td></td>
<td>Diospyrus hispida</td>
<td>-29.2</td>
</tr>
<tr>
<td></td>
<td>Tabebuia roseo-alba</td>
<td>-29.4</td>
</tr>
<tr>
<td></td>
<td>Magnolia pubescens</td>
<td>-29.9</td>
</tr>
</tbody>
</table>

The results were different for the arboreal savanna. From the soil surface to the 60–70 cm depth interval, the \(\delta^{13}C \) became less negative, suggesting that C₄ vegetation had replaced the present vegetation. The value of −20% found at 60 cm depth is close to the average value found between 350 m and 650 m in the longitudinal transect, at the transition of grassy savanna to park savanna (Fig. 2). From the 60–70 cm depth interval to the bottom of the soil pit, \(\delta^{13}C \) become progressively more negative; at 160–170 cm the \(\delta^{13}C \) is similar to the value for the surface, indicating that C₃ plants had preceded the C₄ vegetation which formed the soil at 60–70 cm.

The AMRT of the soil organic matter was older in the
PAST VEGETATION CHANGE IN THE PANTANAL

Fig. 3 Variation in δ^{13}C of SOM with depth in the arboreal and grassy savanna. Numbers indicate the AMRT expressed in years BP.

grassy savanna than in the arboreal savanna (Fig. 3). At 60–70 cm depth the SOM was 1940±40 BP for the grassy savanna, and approximately three times younger (640±40 BP) for the arboreal savanna. The same ratio was maintained at the 110–120 cm depth interval, with values of 4570±40 BP for the arboreal and 1480±50 BP for the grassy savanna. At the bottom of the arboreal savanna soil pit, the radiocarbon age was 2000±40 BP (Fig. 3).

Discussion

The name Pantanal (swamp) may give a false impression of an area permanently flooded, with poorly drained soils promoting the accumulation of organic matter. Actually, most of the Pantanal is only seasonally flooded, and some areas, like the arboreal savannas, are only rarely flooded. In addition, the sandy texture of the soil facilitates good drainage. These, combined with the alternation between aerobic and anaerobic conditions which fosters organic matter decomposition (Lugo et al. 1990), are the most likely reasons for the observed low organic carbon concentration in both environments. The arboreal savanna soil showed higher carbon concentrations and stocks, probably reflecting higher carbon inputs from vegetation, and less frequent flooding events. However, compared to other soils, the carbon stock was much lower. For instance, *Areia Quartzoza* soils collected in the Amazon basin (Moraes 1991) showed a carbon stock approximately three times higher than the arboreal savanna. At the bottom of the arboreal savanna soil pit, the radiocarbon age was 2000±40 BP (Fig. 3).

Soil organic matter is often modelled as a two- or three-component system, a mixture of more rapidly cycling fractions with turnover times ranging from less than one year to decades, and passive organic matter, with millennial or longer turnover times (Harrison et al. 1993; Jenkinson & Raynor 1977; O'Brien & Stout 1978; Parton et al. 1987; Schimel et al. 1994; Townsend et al. 1995; Trumbore 1993). Trumbore et al. (in press) have shown that this picture holds true even at depths > 1 m in tropical soils, as deep roots feed an active carbon cycle (turnover times of < 40 years) while the bulk of the carbon is in old, refractory organic carbon. Thus, the AMRT associated with a 14C age, even in deep soils is most likely a mixture of decadal and faster cycling organic matter (with 14C values > Modern) and old, refractory carbon (with 14C values substantially less than Modern). In a soil profile where vegetation has changed with time from C3 to C4-dominated plants, we assume that the 14C changes in the SOM may be used as a measure of the minimum amount of rapidly cycling carbon (as these have adjusted to a new steady state within a century of conversion), and that residual 14C-depleted carbon represents the passive carbon accumulated over millennia in the old vegetation regime. We used this approach to calculate the possible timing of vegetation change in this specific site of Pantanal. The change from arboreal savanna to grassy savanna (less negative δ^{13}C towards the soil surface) can be analysed on the results from the grassy savanna soil profile. We may assume that the carbon present at the 110–120 cm depth is a mixture of carbon of different ages: an old carbon fraction, originated from C3 plants (AMRT > 4572 BP, which is the estimated age at this depth interval in the grassy savanna profile), and a younger fraction derived from C4 plants, added since the last vegetation change, and therefore with AMRT < 4572 BP. Therefore, the minimum AMRT of the old C3 carbon at the 110–120 cm would be c. 4572 BP, and no mixture would have taken place.

The maximum AMRT can be calculated through the following 14C mass balance:

$$100\% \times (\Delta^{14}C_{\text{soil-carbon}}) = \%C_4 (\Delta^{14}C_{\text{new-carbon}}) + \%C_3 (\Delta^{14}C_{\text{old-carbon}})$$

where $\Delta^{14}C_{\text{soil-carbon}}$ is the 14C activity at the 110–120 cm...
where $\Delta^{14}\text{C}_{\text{soil-carbon}}$ is the carbon isotopic composition of the soil profile, were estimated by ^{14}C mass balance, and $\%C_4$, the relative percentage of C_4 and C_3 carbon in the old C_3 carbon that we want to estimate. The $\%C_4$ savanna ($+141\%$), and $\Delta^{14}\text{C}_{\text{old-carbon}}$ is the ^{14}C activity of the old C_4 carbon that we want to estimate. The $\%C_3$ and $\%C_4$, the relative percentage of C_4 and C_3 carbon in the soil profile, were estimated by ^{13}C mass balance, through the following equation:

$$\%C_3 = \left(\frac{\delta^{13}\text{C}_{\text{sample}} - \delta^{13}\text{C}_{C_3}}{\delta^{13}\text{C}_{C_4} - \delta^{13}\text{C}_{C_3}} \right) \times 100,$$

where $\delta^{13}\text{C}_{\text{sample}}$ is the carbon isotopic composition of the soil at the 110–120 cm depth in the grassy savanna (-22.3%), $\delta^{13}\text{C}_{C_3}$ is the carbon isotopic composition of the C_3 material that is being added to the soil (-12.4%), or the ^{13}C isotopic composition of the C_4 vegetation cover), and $\delta^{13}\text{C}_{C_4}$ is the carbon isotopic composition of the C_3 material in the soil (-27.9%, assumed to be 2% less negative than the average isotopic composition of C_3 plants, $-29.9\%\pm 1.4\%$, $n = 29$). The proportion of C_4 plants is $100 - \%C_3$.

Using (4) and (5) we calculated a maximum AMRT equal to 11 420 yr. Therefore, the vegetation change from arboreal to grassy savanna probably occurred between 4572 and 11 420 yr BP. The two major dry periods reported to have occurred in tropical and sub-tropical regions of South America were from 4000 to 5000 yr BP, and from 10 400 to 10 500 yr BP (Ab'sy & van der Hammen 1976; Ab'sy 1980; Ab'sy et al. 1991; Servant et al. 1993), which agree with the range found in the Pantanal soil.

The same approach was used to estimate the timing of the change from grassy savanna to arboreal savanna, indicated by the results of the 50–60 cm depth interval in the arboreal savanna soil profile (Fig. 3). In this case, however, as the C_3 carbon increased 50–60 cm depth towards the soil surface, old carbon was assumed to be of C_4 origin, and new carbon of C_3 origin. In this case the data was analysed based on the results of the 30–40 cm depth interval in the arboreal savanna soil profile. The following values were used in (4): $+51\%$ for $\delta^{14}\text{C}_{\text{soil-carbon}}$, $+141\%$ for $\delta^{14}\text{C}_{\text{new-carbon}}$, and $\delta^{14}\text{C}_{\text{old-carbon}}$ is the ^{14}C activity of the old C_4 carbon that we want to estimate. In (5), the same values of $\delta^{13}\text{C}$ for vegetation types were used, and the $\delta^{13}\text{C}$ of the soil samples at 50–60 cm depth interval was equal to -21.1%. The maximum AMRT was then estimated to be equal to 1390 yr BP, suggesting that the change from grassy savanna to arboreal savanna was a recent local event.

In parallel with suggestions for other areas in the world (e.g. MacPerson et al. 1993), woodland is expanding over the grassland at this specific site of the Pantanal. However, we also observed that the highly dynamic characteristic of the flooding regime may cause large variations in the stable carbon isotopic composition, and in the radiocarbon age as well. Therefore, the results presented here should not be extrapolated to other areas of the Pantanal region, without further studies. Overall, the findings reveal the dynamic nature of the spatial distribution of C_3 and C_4 savanna sub-communities and the coincidence of vegetation change with periods of climate change.

References

This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.