Title
At-wavelength and optical metrology of bendable x-ray optics for nanofocusing at the ALS

Permalink
https://escholarship.org/uc/item/65n7f6p1

Author
Yashchuk, Valeriy V.

Publication Date
2009-08-21
At-wavelength and optical metrology of bendable x-ray optics for nanofocusing at the ALS*


*Lawrence Berkeley National Laboratory, Berkeley, CA 94720
*syuan@lbl.gov

Abstract: We report on a new research and development program at the Advanced Light Source, Lawrence Berkeley National Lab directed to establish both at-wavelength and conventional optical metrology techniques suitable to characterize the surface profile of super-high-quality x-ray optics with sub-microradian precision.

OCIS codes: (340.7450)

1. Introduction to the project and the proposed experiments

Figure 1 illustrates the various techniques that we plan to develop and test in the course of the project. The techniques have been successful in the EUV energy range [1] and the goal of our investigation is to extend the methods to the soft x-ray energy range. Combination of these techniques with high precision optical metrology and experimental methods [2] will enable us to provide in situ setting and alignment of bendable x-ray optics to realize sub-100-nrad surface quality of super polished substrates and sub-100-nm focusing at beamlines. These new techniques will allow closed loop feedback systems to be implemented for x-ray nano-focusing. This performance level is beyond the reach of existing x-ray tools, but is already within the grasp of the leading mirror substrate manufacturers if they are provided adequate metrology [3].

Fig. 1: Optical testing techniques under development.

References

*This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.