Lawrence Berkeley National Laboratory

Recent Work

Title
A WIDEBAND GAIN CONTROL

Permalink
https://escholarship.org/uc/item/65x0d0c3

Author
Scott, Larry.

Publication Date
1962-04-26
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

Contract No. W-7405-eng-48

A WIDE BAND GAIN CONTROL

Larry Scott

April 26, 1962
A WIDEBAND GAIN CONTROL

Larry Scott

Lawrence Radiation Laboratory
University of California
Berkeley, California

April 26, 1962

ABSTRACT

Presented here is a design for a wide-bandwidth gain-control stage used in a pulse amplifier, Model 10-03 ns, that has a maximum voltage gain of 10 and a rise time (10 to 90%) of 3 nsec. Circuitry is not complicated by compensation difficulties, which have been circumvented by placing the potentiometer at a very low impedance node, and by using low values of potentiometer resistance.
A WIDEBAND GAIN CONTROL

Larry Scott
Lawrence Radiation Laboratory
University of California
Berkeley, California

April 26, 1962

The realization of a continuously variable gain control functioning over a wide band of frequencies often results in relatively complicated circuitry because of the compensation required. The parasitic capacitance and inductance of available potentiometers when they are used in such gain control circuits, have made compensation necessary, especially when used on a relatively high-impedance node of an amplifying stage. The design used here circumvents the compensation difficulty by placing the potentiometer at a very low-impedance node, and by using low values of potentiometer resistance (see Fig. 1).

The first transistor, Q_1, provides an impedance match to the source and isolates it from the following circuitry. The minimum bandwidth depends upon the capacitance to ground at the collector of Q_1 shunting the maximum resistance value obtained by a potentiometer setting that corresponds to the half-gain position. As shown in Fig. 1, the capacitance to ground is C_{ob} of Q_1, plus the stray wiring capacitance and the capacitance of the potentiometer, a total of approximately 10 pF. The maximum resistance to ground is $(70 + R_{in})/4$, with $R_{in} \approx kT/qI_e$, or \approx 2.0 ohms. If the gain setting is either higher or lower, the resistance to ground is smaller, hence, the bandwidth is larger, being equal to $1/RC$.

-1-
The relatively high impedance collector node of Q_2 is available for driving any subsequent circuitry. The variation in gain is from

$$0.93 \approx \frac{70}{70 + R_{\text{in}}} \quad \text{to} \quad 0.27 \approx \frac{20}{70 + R_{\text{in}}}.$$

The gain-control stage shown was used with pulse amplifier designed for a maximum voltage gain of 10 and a rise time, 10 to 90%, of 3.0 nsec (Fig. 2). Adding the gain-control stage made no observable change in the rise time of the fixed-gain portion of the amplifier.

The amplifier circuit consists of a diode current-limiting section followed by two stages of amplification employing shunt feedback with R_C loading. These amplifying stages drive a low-impedance load of Q_5, a common-base stage, which realizes a voltage gain of about 4 to the base of Q_6. The last two transistors are a pair of emitter followers that develop the output voltage into a load of 50 ohms.
REFERENCES

FIGURE LEGENDS

Fig. 1. Wide-bandwidth gain control with matched input, high-impedance output. Gain variation (+ or - pulses) is 0.27 to 0.93.

Fig. 2. Pulse amplifier Model 10-03 ns. The rise time is 3.0 nsec, with an output limited to a maximum + and - swing of 1.5 V into a 50-ohm load. All capacitors are 6.8 μF/30 V dry tantalum. At all points where supply voltages are shown, additional capacitors are used as needed for accurate bypassing. All leads are kept as short as possible. Q7 is in a low-capacitance heat sink. All resistors are 1/2 watt, unless otherwise noted. Gain is 3 to 10, continuously adjusting and noninverting. Maximum output: ±1.5 V.

Fig. 3. Wave shape of amplifier output.
200 mV/cm

(10 nsec/cm)

(2 nsec/cm)

→ Time
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.