Lawrence Berkeley National Laboratory
Recent Work

Title
NOTE ON ""THE PHYSICS AND PHYSIOLOGY OF INSECT PLIGHT"

Permalink
https://escholarship.org/uc/item/6602w08z

Author
Crawford, Frank S.

Publication Date
1970-08-01
NOTE ON "THE PHYSICS AND PHYSIOLOGY OF INSECT FLIGHT"

Frank S. Crawford

August 1970
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Michael Deakin has made an elegant application of dimensional analysis to derive a relation between the mass of an insect, the effective area of its wings, and the frequency of its wing beat. A fruitful alternative approach is to use Newton's laws of motion and a simple model of the wing beat to derive that relation.

Consider a hovering insect. Its weight mg must be supported by the reaction of the wings against the downward flow of air pushed down by the wings; i.e.,

\[mg = d(m_{\text{air}} v_{\text{air}})/dt. \]

(1)

Let us make the wingstroke as effective as seems possible. Thus assume that on the upstroke the wings are "feathered" and have no effect. Assume that on the downstroke the mass of air pushed down is the mass density \(\rho \) of the air times the volume swept out by the wing, which is the wing area \(A \) times twice the amplitude \(z_0 \) of the wingstroke; thus \(m_{\text{air}} = \rho (2Az_0) \). Assume that this air all achieves the maximum wing velocity, \(\omega z_0 \). (We are assuming the wing moves with harmonic motion of angular frequency \(\omega \) and amplitude \(z_0 \).) This takes place once each period, so we let \(dt \) equal the period, \(2\pi/\omega \). If we average over one cycle, Eq. (1) becomes

\[mg = \rho (2Az_0) (\omega z_0) (\omega/2\pi). \]

(2)
For a reasonable wing shape, and taking as large an amplitude z_0 as seems possible, we set $z_0^2 = A$ in Eq. (2). That gives

$$\omega^2 = \pi mg/\rho A^2.$$

(3)

Our Eq. (3) is the same as Deakin's Eq. (12), except for one very important fact: Deakin's equation, being the result of dimensional analysis, has an unknown dimensionless numerical factor k of order unity, which he evaluates by considering data presented by Rashevsky. Because we used a specific model we have no undetermined constants.

For an ordinary bee Deakin gives $m = 0.001$, $A = 0.006$ (all quantities are in cgs units). With $g = 980$ and air density $\rho = 0.0013$, our Eq. (3) yields a frequency $\omega/2\pi$ of 1300 sec$^{-1}$. This is about five times the experimental value of 200 to 250 sec$^{-1}$ quoted by Deakin for a bee. Since our model is crude, this is a reasonable order-of-magnitude agreement. Nevertheless the discrepancy of a factor of five is fascinating, because in our estimate we have already pushed every factor in the direction that will maximize the momentum delivered to the air on each wing stroke and thus minimize the frequency required to support the bee. Now, according to Eq. (2), ω^2 is inversely proportional to the volume $2Az_0$ of air pushed down by the wings. Thus, since the bee needs only one-fifth the frequency we estimated, he must be pushing down 25 times as much air on each stroke as we estimated! How does he do it? Does he use the air's viscosity to drag extra air along, or its compressibility and inertia to push extra air before it can get out of the way? We see that interesting and important physics (e.g., viscosity) has been omitted from the model.
In fact, we treated the air as a collection of independent molecules not interacting with each other, whereas we know that the molecules actually have mean free paths of only about 10^{-4} cm between collisions, and form a viscous compressible fluid. Thus we cannot expect Eq. (2) or (3) to be right. Indeed we easily see that Eq. (3) is wrong at low frequencies, because from it we conclude that birds cannot glide but must drop like thrown rocks if they don't flap their wings.

The quantitative failure of Eq. (3) cannot be obtained from dimensional analysis (because dimensional analysis leaves us with an undetermined numerical factor). Thus a very simple model serves two useful purposes: it gives about the correct order of magnitude without recourse to additional data; and by its quantitative failure it stimulates us to new investigations.

I would like to thank Luis W. Alvarez, Stanley M. Flatté, and Paul L. Hoch for stimulating and helpful conversations.

References

2. For example, let the wing be a rectangle twice as long as wide, and let z_0 be $1/\sqrt{2}$ times the wing length.

4. I thank Luis Alvarez for showing me how to play ping pong with air blown by the paddles.

5. I leave it to the student to consult books on aerodynamics to see if considerations of viscosity, Reynolds number, and whatever else may
account for the missing factor of 25. For a beatiful experimental investigation of bird flight in a wind tunnel, and for numerous references on aerodynamics, see Vance A. Tucker and G. Christian Parrott, J. Exptl. Biol. 52, 345 (1970).
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.