Title
Data Acquisition Protocols and Reporting Standards for Studies of the Electrochemical Reduction of Carbon Dioxide

Permalink
https://escholarship.org/uc/item/662055sh

Authors
Clark, EL
Resasco, J
Landers, A
et al.

Publication Date
2018-04-05

DOI
10.1021/acscatal.8b01340

Peer reviewed
Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide

Ezra L. Clark, Joaquin Resasco, Alan Landers, John Lin, Linh-Thao Chung, Amber Walton, Christopher Hahn, Thomas F. Jaramillo, and Alexis T. Bell

I. INTRODUCTION

The electrochemical reduction of CO₂ offers a means of producing transportation fuels and commodity chemicals using intermittent renewable electricity. Motivated by this objective, numerous publications have appeared in recent years aimed at identifying electrocatalysts that can efficiently and selectively reduce CO₂ to desired products. However, objective evaluation of the activity and selectivity of different catalysts and operating conditions has proven difficult due to a lack of standardized protocols for preparing catalysts and evaluating their electrocatalytic activity. These issues are significant because the performance of electrocatalysts is influenced not only by the composition and morphology of the electrocatalyst itself but also by the composition of the electrolyte, the hydrodynamics of the electrochemical cell, and the purity of both the electrocatalyst and the electrolyte.

This perspective identifies some of the key variables that influence the measured activity and selectivity of CO₂ reduction electrocatalysts with the aim of proposing procedures to obtain reproducible data that can be attributed solely to properties of the catalyst. We show how each factor affects the measured electrocatalytic activity and selectivity and provide recommendations for the preparation of electrocatalysts and the design of electrochemical cells. We demonstrate that interinstitutional reproducibility is observed over independently prepared and tested catalyst materials when these recommendations are considered. Finally, we stress the importance of reporting electrocatalyst activity normalized by the electrochemically active surface area to facilitate the comparison of reported catalysts with those previously known. We demonstrate that, when these factors are accounted for, reproducibility is observed over independently prepared and tested catalysts. This perspective would greatly facilitate the identification of superior catalysts for CO₂ reduction arising solely from changes in their composition and pretreatment.
active surface area and caution against claims of superior catalyst performance based solely on Faradaic efficiency.

II. BENCHMARKING ELECTROCATALYTIC PERFORMANCE

Comparing catalytic data from different laboratories can be convoluted because each tends to use its own sources of catalyst and electrolyte, method of catalyst preparation and pretreatment, and design of the electrochemical cell used for catalyst evaluation. As we show below, these differences can introduce unintended consequences that affect the observed activity of CO2 reduction electrocatalysts. To minimize the effects of factors other than catalyst composition and morphology, we recommend that research groups benchmark their ability to accurately and consistently reproduce the published activity for a well-studied planar monometallic catalyst prior to reporting data for new catalysts.

The choice of electrocatalyst to be used for benchmarking purposes requires careful consideration. Cu is the most well studied catalyst for CO2 reduction because it is the only monometallic catalyst that can reduce CO2 to hydrocarbons and alcohols with reasonably high Faradaic efficiencies.11–14 However, it should be noted that Cu produces a wide variety of products, the distribution of which is sensitive to the manner of catalyst preparation. To illustrate this point, the CO2 reduction activities observed over Cu(111) and Cu(100) are compared in Figure 1a.13,15,16 Experimental details of the preparation and testing of these epitaxial thin films can be found in sections SI-1 and SI-2 in the Supporting Information. The Cu(100) surface exhibits an activity for generating C2+ products roughly 1 order of magnitude higher than that for Cu(111), as reported elsewhere.13,16 This facet dependence can cause polycrystalline Cu foils obtained from different vendors or even different batches from the same vendor to exhibit large differences in electrocatalytic activity and selectivity that arise due to variations in surface faceting. In contrast to Cu, Ag predominately produces H2 and CO, with CO Faradaic efficiencies exceeding 90% at an applied potential of −1 V vs RHE.17,18 Furthermore, the product distribution obtained over Ag is less facet dependent than that observed over Cu.17 To illustrate this point, the CO2 reduction activities of Ag(111) and Ag(100) are compared in Figure 1b. While the CO evolution activity exhibits a slight facet dependence, the
variation observed is only a factor of ~2. The relatively similar activity observed over Ag(111) and Ag(100) means that the activity observed over polycrystalline Ag foils will exhibit less variation from sample to sample. Thus, we recommend that Ag be used as a benchmarking electrocatalyst to assess the ability of a research group to carry out accurate and reproducible activity measurements.

Surface preparation methods can also introduce additional variations in activity and selectivity between samples of the same metal due to the effect that these pretreatments have on the purity and distribution of facets at the electrode surface. Mechanical polishing can introduce contaminants onto the catalyst surface from the polish residue (see section SI-3 in the Supporting Information). These polish residues can be susceptible to electrochemical reduction under the conditions of CO2 reduction and may exhibit background activity in the metallic state, as is the case for alumina-based polishing compounds. As a result, SiC- and diamond-based polishing compounds should be favored over alumina-based polishing compounds since residues from these compounds will be largely electrochemically inert. Electropolishing can also be utilized, but thorough rinsing of the electrocatalyst should be practiced to prevent carryover of specifically adsorbing anions into the reaction vessel.

Comparisons between different catalysts should only be done if their activities were measured in identical electrolyte solutions. Several studies have demonstrated that the identity of the cations and anions in the electrolyte affect both the activity and selectivity of CO2 reduction catalysts. For example, the activity and selectivity of both polycrystalline foils and epitaxial thin films of Ag and Cu have been demonstrated to change as the size of the electrolyte cation is increased from Li+ to Cs+. Larger cations, such as Cs+, favor the formation of CO over Ag and C2+, products over Cu due to electrostatic field stabilization of species involved in the formation of CO in the case of Ag and of C–C bonds, such as adsorbed OCCO and OCCHO, in the case of Cu. Conversely, the cation size has no effect on the partial current densities for H2 or CH4 because their mechanistic pathways do not involve reaction intermediates with significant dipole moments and there are insignificant changes in the dipole moment between the reactant and transition state. The composition of the anionic component of the supporting electrolyte can also affect CO2 reduction selectivity. For example, in the case of CO reduction over Cu, phosphate-based electrolytes result in higher partial currents for H2 and CH4 in comparison to bicarbonate-based electrolytes, but the choice of electrolyte anion has little effect on the partial currents for CO, HCOO-, C2H4, or C2H5OH. Furthermore, changes in the buffer concentration also affect catalyst selectivity. As a result of these influences, researchers should only compare catalytic data obtained using identical electrolyte solutions. Obtaining catalytic data in either 0.1 M KHCO3 or 0.1 M CsHCO3 will enable the greatest comparison to published catalytic data, since the majority of CO2 reduction studies have been conducted using these electrolytes.

III. EFFECT OF ELECTROCHEMICAL CELL HYDRODYNAMICS ON ELECTROCATALYTIC ACTIVITY

The electrochemical reduction of CO2 is highly susceptible to concentration polarization, wherein Faradaic processes induce concentration gradients near the electrode surface. These concentration gradients arise because bicarbonate solutions are weak buffers and CO2 has a low mass transfer coefficient through aqueous solutions. Even modest current densities cause the pH and CO2 concentration near the cathode surface to vary significantly from that in the bulk electrolyte. The magnitude of the concentration gradients depends largely on the hydrodynamics of the electrochemical cell. As a result, the electrolyte needs to be mixed vigorously to ensure sufficient mass transport to and from the cathode. Electrolyte mixing in small electrochemical cells is usually accomplished by agitation of the electrolyte with a column of CO2 bubbles, although pump-driven recirculation of CO2-saturated electrolyte has also been employed. Activity data acquired in a regime where significant concentration polarization occurs do not reflect the intrinsic activity or selectivity of the catalyst, but rather the convolution of the properties of the catalyst and the effects of mass transfer. Therefore, researchers should avoid measuring catalytic activity under conditions where mass transfer effects are significant, because correcting for these effects is nontrivial. Researchers should also only consider the portion of their data that has been shown to be free of the effects of mass transfer when making conclusions about intrinsic reaction kinetics.

The mass transfer boundary layer thickness of an electrochemical cell can be quantified by measuring the diffusion-limited current density for ferricyanide reduction (see section SI-4 in the Supporting Information). As shown in Figure 2, increasing the CO2 flow rate reduces the hydrodynamic boundary layer thickness but has a diminishing effect as the CO2 flow rate is increased. Activity measurements were conducted as a function of the applied potential for different CO2 flow rates to demonstrate the effect that the mass transfer boundary layer thickness has on the measured activity of polycrystalline Ag. Figure 3 shows the partial current densities for H2 and CO as a function of the mass transfer boundary layer thickness, which was systematically varied by varying the CO2 flow rate through the cell. The variation in the partial currents for H2 and CO are direct results of the variation in the mass transfer boundary layer thickness at the cathode surface and are not due to changes in the bulk CO2 concentration. The latter statement is supported by the observation that electrochemical cells incorporating gas dispersion frits maintain saturation of the bulk electrolyte with CO2 during prolonged electrolysis.
We note that the tested Ag films were completely free of contaminants within the detection limits of XPS and LEIS (see section SI-5 in the Supporting Information). Thus, the observed variations in electrocatalytic activity are a direct result of the degree to which concentration polarization influences the observed electrocatalytic activity. As shown in Figure 3, the hydrodynamic regime in which the activity of polycrystalline Ag is measured dictates what is observed at potentials more negative than −1 V vs RHE, the potential for which mass transfer effects become significant (see section SI-6 in the Supporting Information). As the hydrodynamic boundary layer thickness is reduced, less H₂ and more CO is produced at a given applied potential, resulting in a CO Faradaic efficiency swing of ∼60% at −1.4 V vs RHE. As a result, the maximum rate of CO₂ consumption over the cathode increases inversely with the hydrodynamic boundary layer thickness, as expected for a diffusion-limited process (see section SI-6).

This demonstration of the influence of the hydrodynamics of the electrochemical cell on the measured activity of polycrystalline Ag indicates the importance of designing electrochemical cells with adequate electrolyte mixing and conducting catalytic activity measurements in a regime that is minimally influenced by mass transfer to the cathode surface. Only under such conditions is it possible to definitively measure the intrinsic activity of the catalyst and obtain data that are directly comparable across research institutions. For the electrochemical cell and polycrystalline Ag catalyst utilized here, the effect of concentration polarization becomes significant for applied potentials below −1 V vs RHE, as indicated by the deviation of the CO partial current density from Tafel kinetics (see section SI-6 in the Supporting Information). As a result, catalysts with high surface areas are more susceptible to mass transfer limitations in comparison to planar catalysts, which complicates obtaining an accurate measurement of their intrinsic activity. Another point to realize is that concentration polarization introduces error when data are reported on a RHE scale because the local pH deviates substantially from that in the bulk, as shown in Figure 4. This error can become significant when catalysts are compared that suffer from concentration polarization to different extents. Examples include comparing catalysts with vastly different surface roughness or comparing planar catalysts evaluated in electrochemical cells with different hydrodynamic boundary layer thicknesses.

Figure 3. Dependence of the measured activity of polycrystalline Ag on the hydrodynamic boundary layer thickness of the electrochemical cell: (a) H₂ partial current density, (b) CO partial current density, (c) H₂ Faradaic efficiency, and (d) CO Faradaic efficiency.

Figure 4. Calculated pH at the surface of a planar cathode as a function of the geometric current density and the hydrodynamic boundary layer thickness in 0.1 M bicarbonate electrolyte.
These differences can lead to divergent local reaction environments that convolute accurate activity comparisons.

IV. EFFECT OF IMPURITIES ON ELECTROCATALYTIC ACTIVITY

The steady-state activity and selectivity of a material should be measured in the absence of surface contamination to assess its intrinsic catalytic properties. If surface contamination occurs, it is important to distinguish whether it is a consequence of catalytic intermediates that poison the surface or whether it is the result of impurities inadvertently introduced onto the surface. We note that the high overpotentials typically utilized to evaluate the activity of CO₂ reduction electrocatalysts are sufficiently negative to reduce nearly any transition-metal cation that might be present in the catholyte. In general, transition-metal impurities will increase the activity of the electrocatalyst for the H₂ evolution reaction (HER), since the late-transition and p-block metals typically studied as CO₂ reduction electrocatalysts have very low HER activity. Even trace quantities (<1 μM) of transition-metal cations in the electrolyte can cause CO₂ reduction electrocatalysts to lose their activity on the time scale of a typical experiment. Metallic impurities in the catholyte can originate from the solvent, the electrolyte salts, and the other components of the electrochemical cell.

The purity of the electrode surface is often validated using X-ray photoelectron spectroscopy (XPS). This analytical method probes the composition of the top 0.5–2 nm of the sample, depending on the collection angle and the kinetic energy of the relevant photoelectrons. The detection limit of XPS for transition metals is typically between 0.1 and 1 atomic percent, depending on the sample morphology and the combination of elements. While this detection limit may be adequate for certain applications, it is inadequate for validating the purity of catalyst surfaces since even ~20% of a monolayer of impurities can go undetected by XPS. Thus, the lack of observable contamination by XPS does not indicate that the electrode surface is free of contamination. Low-energy ion scattering (LEIS) spectroscopy, also called ion scattering spectroscopy (ISS), can be used to more accurately validate the purity of the catalyst surface, since it only probes the top layer of atoms on the sample surface. However, because LEIS is a line-of-sight technique, it can be difficult to obtain quantitative information about the relative abundance of constituent elements due to their nonequivalent coverage by adventitious adsorbates, such as ambient oxygen. Despite this, ISS is a very useful analytical technique because of its enhanced sensitivity for detecting impurities on an electrode surface.

Researchers have recently demonstrated that Pt and other noble metals typically used as anode electrocatalysts can dissolve under typical operating conditions. The transition-metal cations evolved from the anode can reach the cathode even when an anion exchange membrane is utilized to separate the electrode chambers. Whether this crossover occurs during operation or during the storage and cleaning of the electrochemical cell has yet to be resolved conclusively. The effect of inadvertent Pt contamination on the activity of Cu(100) is shown in Figure 5, which compares the transient activities observed over Cu(100) when Pt and glassy carbon (GC) are employed as anodes. Figure 5a shows that the activity for producing H₂ and C₂H₄ increases and decreases, respectively, over the course of 1 h when Pt is used as the anode. However, Figure 5b shows that the activity for all products is remarkably stable when GC is used as the anode. While both surfaces appeared to be free of contamination by XPS, Pt was detected by LEIS on the Cu(100) electrode tested using a Pt anode. Thus, researchers should employ a sacrificial GC anode when they measure the intrinsic activity of CO₂ reduction electrocatalysts to prevent inadvertent surface contamination.

The degree to which impurities affect the observed activity depends strongly on the surface area of the cathode relative to the volume of the catholyte. Since the cathodic potential needed to drive CO₂ reduction is usually much more negative than the standard reduction potential of transition-metal cations, it can be assumed that over a long period of time most of the metal impurities present in the electrolyte will be electrodeposited onto the cathode surface. Figure 6 demonstrates that even very small concentrations (<1 μM) of electrolyte impurities can result in a significant coverage (0.1 ML) on the electrocatalyst surface (see section SI-7 in the Supporting Information). Furthermore, the calculation indicates that contamination will be especially problematic for systems where the catholyte volume is large in comparison to the electrode surface area. This means that the tolerance for impurities increases with the roughness of the catalyst surface. Therefore, researchers should be mindful of the different extents to which impurities could influence the observed activity when they compare two catalysts with significantly different roughness factors. For instance, lower rates of HER over a high-surface-area catalyst in comparison to a low-surface-
area standard could potentially be the result of a smaller fraction of surface sites being covered by electrodeposited impurities.

V. INTERINSTITUTIONAL REPRODUCIBILITY

Consistent and reproducible reports of CO₂ reduction electrocatalysis are critical to advancing the field. By first benchmarking electrochemical systems against standard catalysts, researchers can be assured that results obtained from testing a novel catalyst formulation will be repeatable at other institutions and that measured activity can be confidently attributed to the properties of the catalyst itself. The entire electrochemical system, including catalyst, electrolyte, electrochemical cell, and operating conditions, needs to be considered before making comparisons with the literature.

With careful experimentation, electrocatalyst activity can be accurately and reliably reproduced at different academic institutions. This point is nicely illustrated by the data presented in Figure 7, which shows the activity for selected products obtained over polycrystalline silver and epitaxial Cu(100) thin films, prepared and tested independently at Berkeley and Stanford. Similar experimental protocols were used at both institutions to avoid artifacts from impurities, and a potential range was chosen for comparison in which the effects of concentration polarization were minimized. Further details of the cell design and experimental protocols at each institution are included in sections SI-1 and SI-2 in the Supporting Information. The close agreement in observed activity demonstrates that reproducibility can be achieved with careful experimentation.

VI. REPORTING ELECTROCATALYTIC ACTIVITY

Several figures of merit can be utilized to report electrocatalytic activity and selectivity. One commonly used metric for selectivity is Faradaic efficiency, which is defined as the fraction of Faradaic charge utilized to produce a given product. While Faradaic efficiency is useful for describing the selectivity of a catalyst, it is problematic when catalysts with drastically different activities are compared. For example, it is tempting to conclude that the catalyst that is more selective for producing a specific product is more active for producing that product. However, an increase in selectivity to a product may or may not be accompanied by an increase in the rate at which that product is produced. In these cases, only comparing Faradaic efficiencies can obscure the true differences between two catalysts. The rate of product generation, which is proportional to its partial current density, is a much less ambiguous descriptor of catalytic activity. Figure 8 compares the Faradaic efficiencies and partial current densities observed over Cu(100) at a fixed applied potential as a function of the identity of the alkali cation in 0.1 M bicarbonate electrolytes. The trends in Faradaic efficiency exhibit a decrease in selectivity to HER as the size of the alkali-metal cation increases. On the basis of this metric alone, one might conclude that larger cations suppress the HER. However, Figure 8b shows that the rate of HER is unaffected by the identity of the electrolyte cation, as the decrease in selectivity is accompanied by an increase in the total current density. This example demonstrates that only comparing Faradaic efficiencies can give an incomplete picture of catalyst performance and in some cases can even provide a qualitatively incorrect description of catalytic behavior as properties of the system change.

Measured rates must be normalized by the number of available catalytic sites when comparisons are made between different catalysts. For thermally activated reactions, and for other well-studied electrocatalytic reactions, it is common to normalize observed rates by the number of active sites. This procedure has not yet been adopted for CO₂ reduction, and catalytic activity is typically reported on the basis of the

Figure 6. Calculated electrolyte impurity concentration required to cover 10% of the electrocatalyst surface based on the ratio of the geometric cathode surface area to the electrolyte volume and the roughness factor of the cathode surface.

Figure 7. Comparison of activity data measured over electrocatalysts prepared and tested independently in 0.1 M KHCO₃ at two different academic institutions: (a) polycrystalline Ag and (b) Cu(100) thin films.
geometric area of the cathode. This is problematic because it makes it difficult to determine if reported activity improvements are the result of intrinsic activity improvements or simply higher catalyst surface area. While normalization to the number of active sites is a preferable metric, it can be difficult to identify what the active site is. However, normalizing the measured activity by the electrochemically active surface area is a straightforward way to normalize catalytic activity that is meaningful and applicable to a wide variety of different electrocatalysts.

The electrochemically active surface area (ECSA) of an electrocatalytic material can be estimated by measuring the double-layer capacitance of the electrode–electrolyte interface. The double-layer capacitance can be measured by conducting cyclic voltammetry (CV) in a potential range where no Faradaic processes occur, typically a 100 mV window centered at the open-circuit potential (OCP). In this potential region, any measured current can be ascribed to the non-Faradaic process of charging the electrochemical double layer. The charging current, \(i_c \), measured during CV is related linearly to the scan rate \(\nu \) with a slope equal to the double-layer capacitance:

\[
C_{DL} = \frac{i_c}{\nu}
\]

This measured capacitance \(C_{DL} \) can be compared to that of a smooth planar surface \(C_{REF} \) to obtain a relative roughness factor for the electrocatalyst of interest:

\[
ESCA = \frac{C_{DL}}{C_{REF}}
\]

Since the reference sample is unlikely to be atomically flat and/or have the same surface termination as the sample of interest, comparisons on this basis or using a published reference capacitance value may not give accurate absolute values for the total surface area of the catalyst. However, this is generally acceptable, since differences between a novel catalyst and a well-known benchmark are typically of interest. However, it is important to realize that in some cases the entire surface area of the electrode is not electrocatalytically active. As a result, normalizing the measured activity by the total ECSA would be inappropriate. One example is when nanoparticles are supported on an inert support, such as GC or Toray paper. For these systems underpotential deposition can give a more accurate estimate of the catalytically relevant surface area. However, this approach is dependent on the elemental composition of the electrocatalyst and must be tailored to fit the application.

The importance of reporting current densities normalized to the ECSA is illustrated in Figure 9, which compares the CO\(_2\) reduction activities observed over two polycrystalline Ag

Figure 8. (a) Faradaic efficiencies and (b) partial current densities for selected products observed over Cu(100) measured at an applied potential of −1.0 V vs RHE in 0.1 M bicarbonate electrolytes as a function of the identity of the alkali cation.

Figure 9. Comparison of the CO evolution activity observed over mechanically polished and electrochemically roughened Ag catalysts normalized to (a) geometric area and (b) electrochemically active surface area (ECSA).
electrodes with different roughness factors. The first sample was polished mechanically, while the second was roughened by electrochemical cycling in 1 M KCl. Figure 9a shows that the geometric CO partial current densities of the electrodes vary by nearly 1 order of magnitude. However, the electrocatalysts also exhibit drastically different surface areas (see section SI-8 in the Supporting Information). As a result, when the CO partial current densities are normalized by the ECSA, the catalysts are identical at low overpotentials (Figure 9b). At high overpotentials, the relatively smooth Ag catalyst performs better because mass transfer is limiting the supply of CO$_2$ to the roughened electrode. The effects of mass transfer can be mitigated by increasing the CO$_2$ flow rate, thereby increasing the potential window over which the two samples show identical activity. These data suggest that differences in ECSA do not lead to differences in the intrinsic activity in this case. This example highlights the importance of proper data treatment and normalization, as comparisons solely based on Faradaic efficiency or geometric partial current densities can be misleading. These results also demonstrate that care should be taken in using onset potential as a metric of intrinsic catalytic activity, since it is entirely dependent on the detection limits of the experimental setup.

The ECSA-normalized CO evolution activities of Au-based electrocatalysts have recently been compared, leading to the conclusion that no Au-based catalyst formulation reported in the literature exhibits activity superior to that of polycrystalline Au foils.57 There has also been substantial interest in high-surface-area Cu-based catalysts for CO$_2$ reduction, in particular those derived from the reduction of oxidized Cu.$^{4,7,58−64}$ It has been reported that preoxidized Cu catalysts exhibit an exceptionally high activity for producing multicarbon products, such as C$_2$H$_4$ and C$_2$H$_5$OH. These studies have stimulated efforts aimed at understanding the origin of the seemingly superior catalytic activity of these oxide-derived catalysts in comparison to polycrystalline Cu foils.$^{65−72}$ However, it has not been clearly demonstrated if the enhanced activity is due to an increase in the total surface area of the catalyst or to an enhancement of the intrinsic activity.$^{61−68}$ Using the metrics discussed above, we show in Figure 10 an example of an activity comparison between Cu standards (polycrystalline Cu foil and epitaxial Cu thin films) and a plasma-treated Cu catalyst for which surface area measurements are available. We see that the ECSA-normalized partial currents for C$_2$H$_4$, the most abundant multicarbon product produced by Cu, reported for this high-surface-area electrocatalyst are comparable to those observed over polycrystalline Cu and Cu(100), indicating that the intrinsic activity of this electrocatalyst for producing multicarbon products is not significantly affected by the way in which the catalyst is prepared. A more extensive comparison of high-surface-area Cu catalysts is shown in Figure S9, from which the same conclusion can be drawn (see section SI-8 in the Supporting Information). The different methods of producing Cu catalysts may result in preferential exposure of different low Miller index planes, as the variation in the data is similar to the differences in activity of Cu(111) and Cu(100); however, there is no evidence that these preparations yield sites substantially more active for producing C$_2$H$_4$ in comparison to those present on these two facets.

Although high-surface-area Cu catalysts do not show higher intrinsic activity for multicarbon product formation than polycrystalline Cu foils, their selectivity to these products is generally higher. In Figure 10b we show the specific partial current for producing H$_2$ over the same Cu-base catalysts analyzed above. We see that the normalized rate of the HER is lower on the high-surface-area electrocatalyst relative to planar Cu foil and Cu(100), especially at low overpotentials. A similar trend is observed in general in Figure S7b in the Supporting Information. A lower per site rate for the HER with a constant rate of multicarbon product formation leads to a higher selectivity to the multicarbon products. This reduced rate of HER could be the result of intrinsic differences in reactivity between the catalysts. However, it is also possible that the lower rates of HER on high-surface-area catalysts relative to polycrystalline Cu is a consequence of other differences, e.g., mass transport effects, or a smaller fraction of surface sites being covered by electrolyte impurities. For example, it has recently been demonstrated that bicarbonate anions can act as an H source for the cathode, with the rates of HER scaling with the concentration of bicarbonate anions near the cathode.27 Since the onset of concentration polarization occurs at relatively positive potentials over high-surface-area catalysts, the reduced HER activity might be a consequence of a lower bicarbonate concentration near the cathode.

VII. CONCLUSIONS

In this perspective, we have demonstrated that standardizing the methods used to measure and report electrocatalytic data can aid research efforts aimed at developing novel catalysts for...
CO₂ reduction. We recommend that catalyst activity and selectivity be measured under conditions which do not introduce artifacts from metallic impurities originating from either the electrolyte or a metallic counter electrode. Furthermore, to understand the behavior of the catalyst itself, the measured data should be taken under conditions in which rates are not a convolution of intrinsic kinetics and the effects of mass transport. Finally, catalytic data should be reported as rates normalized to the electrochemically active area or some specific measure of geometric active site density. Adoption of the recommendations presented in this perspective would greatly facilitate meaningful comparisons of activity data between different research groups and would facilitate the advancement of the field.

ASSOCIATED CONTENT

1. Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b01340.

Description of experimental methods, XPS and LEIS of Cu foils prepared via mechanical polishing, experimental protocol for quantifying the hydrodynamic boundary layer thickness of an electrochemical cell, XPS and LEIS analysis of tested electrodes, effect of electrochemical cell hydrodynamics on the measured activity of polycrystalline Ag, details of impurity sensitivity calculations, experimental protocol for quantifying the relative electrode roughness by capacitive cycling, and comparison of ECSA-normalized activities of published Cu-based catalysts (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail for A.T.B.: alexbell@berkeley.edu.

ORCID

Christopher Hahn: 0000-0002-2772-6341
Thomas F. Jaramillo: 0000-0001-9900-0622
Alexis T. Bell: 0000-0002-5738-4645

Author Contributions

E.L.C. and J.R. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. E.L.C. and J.R. were supported by the National Science Foundation (NSF).

REFERENCES

(23) Resasco, J.; Chen, L.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T.; Chan, K.; Bell, A. Promoter Effects of Alkali Metal Cations on the

