Title
Malignancies with Low Fluoro-deoxyglucose Uptake at PET/CT: Pitfalls and Prognostic Importance

Permalink
https://escholarship.org/uc/item/6644h9w2

Journal
RADIOGRAPHICS, 36(1)

ISSN
0271-5333

Authors
Flavell, RR
Naeger, DM
Aparici, CM
et al.

Publication Date
2016

DOI
10.1148/rg.2015150073

Peer reviewed
Malignancies with Low Fluoro-deoxyglucose Uptake at PET/CT: Pitfalls and Prognostic Importance

Robert R. Flavell, MD, PhD
David M. Naeger, MD
Carina Mari Aparici, MD
Randall A. Hawkins, MD, PhD
Miguel H. Pampaloni, MD, PhD
Spencer C. Behr, MD

Abbreviations: FDG = fluorine 18 fluoro-deoxyglucose, HCC = hepatocellular carcinoma, SUV = standardized uptake value

RadioGraphics 2016; 36:293–294
Published online 10.1148/rg.2015150073

The full digital presentation is available online.

Fluorine 18 fluoro-deoxyglucose (FDG) positron emission tomography (PET) is commonly performed for staging and restaging of solid tumors. Although most solid tumors demonstrate high uptake of FDG, many others do not. Low FDG uptake may be due to various reasons, including tumors with low glucose metabolism or low cellularity, improper patient preparation, and small tumor size. The presence of low-level FDG uptake could be a source of scan misinterpretation in these low-cellularity or low-glucose-metabolizing tumors, including low-grade lung adenocarcinomas, renal cell cancers, and mucinous neoplasms. The ability to detect lesions at PET/computed tomography (CT) stems from many factors, including size of the lesion, ability of the tumor to concentrate FDG, proper patient preparation, background FDG uptake in surrounding tissues, and type of scanner used. Several examples of low-grade lung adenocarcinoma, renal cell cancer, and mucinous neoplasms are presented that have low FDG uptake. For example, Figure 1 depicts a renal cell cancer without associated FDG avidity above background activity.

In many neoplasms, including hepatocellular carcinoma (HCC), lymphoma, and prostate cancer, there is strong evidence that increasing FDG avidity correlates with poor prognosis and poor response to treatment. In these cases, high FDG uptake likely correlates with de-differentiation or transformation to a more aggressive form of cancer. For example, in HCC, high FDG uptake predicts poor response to radiation therapy, transarterial chemoembolization, and liver transplantation and is also associated with higher stage and the presence of metastatic disease. Similarly, lesions with high FDG uptake in a patient with a known low-grade lymphoma are suspicious for high-grade transformation (also called Richter transformation). Therefore, in lymphoma, prostate cancer, and HCC, it is important for radiologists to report the degree of FDG uptake.

TEACHING POINTS

- Some malignancies will demonstrate low-level or absent FDG uptake, including renal cell cancer, low-grade lung adenocarcinomas, and mucinous neoplasms.
- In some malignancies, including HCC, prostate cancer, and low-grade lymphomas, the presence of high-level FDG uptake correlates with poor prognosis.
- In general, higher FDG uptake in these malignancies correlates with a poorly differentiated neoplasm that will have a relatively poor treatment response.
- In some malignancies, uptake of a second radiotracer is typically inversely correlated with uptake of FDG. This property is termed the flip-flop effect and is commonly seen in thyroid cancer and neuroendocrine tumors.
In thyroid cancer and neuroendocrine tumors, other nuclear tracers are used to follow disease progression, including iodine 123 (123I), iodine 131 (131I), and indium 111 (111In) pentetreotide, because these tumors biochemically resemble their tissue of origin. When thyroid cancer or neuroendocrine tumors dedifferentiate, they typically lose the ability to bind these tracers. Furthermore, in a manner similar to prostate cancer, lymphoma, and HCC, these more aggressive cancer subtypes also demonstrate increased FDG uptake. Therefore, well-differentiated thyroid or neuroendocrine tumors typically demonstrate high 123I, 131I, or 111In pentetreotide uptake and low FDG uptake. Conversely, poorly differentiated tumors demonstrate low 123I, 131I, or 111In pentetreotide uptake and high FDG uptake. This property has been termed the flip-flop effect. In general, these tumors with low iodine and pentetreotide uptake have a poor prognosis and poor response to therapy. Figure 2 depicts a neuroendocrine tumor with high FDG avidity, which portends poor prognosis and poor response to treatment. Importantly, poor 123I or 131I uptake correlates with poor treatment response to 131I. In neuroendocrine and thyroid tumors, it is important to report the presence of iodine, pentetreotide, and FDG uptake.

The online presentation provides a review of tumors with low FDG avidity, tumors in which FDG avidity carries prognostic importance, and cancers that exhibit the flip-flop phenomenon, with numerous case examples for each category.

Suggested Readings

