Title
A Generative Theory of Similarity

Permalink
https://escholarship.org/uc/item/66b344s3

Journal

ISSN
1069-7977

Authors
Bernstein, Aaron
Kemp, Charles
Tenenbaum, Joshua B.

Publication Date
2005

Peer reviewed
A Generative Theory of Similarity

Charles Kemp, Aaron Bernstein & Joshua B. Tenenbaum
{ckemp, aaronber, jbt}@mit.edu
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology

Abstract

We propose that similarity judgments are inferences about generative processes, and that two objects appear similar when they are likely to have been generated by the same process. We present a formal model based on this idea, and suggest that it may be particularly useful for explaining high-level judgments of similarity. We compare our model to featural and transformational accounts, and describe an experiment where it outperforms a transformational model.

Keywords: similarity; generative processes; computational theory

Every object is the outcome of a generative process. An animal grows from a fertilized egg into an adult, a city develops from a settlement into a metropolis, and an artifact is assembled from a pile of raw materials according to the plan of its designer. Observations like these motivate the generative approach, which proposes that an object may be understood by thinking about the process that generated it. The promise of the approach is that apparently complex objects may be produced by simple processes, an insight that has proved productive across disciplines including biology (Thompson, 1961), physics (Wolfram, 2002), and architecture (Alexander, 1979). To give two celebrated examples from biology, the shape of a pinecone and the markings on a cheetah’s tail can be generated by remarkably simple processes of growth. These patterns can be characterized much more compactly by describing their causal history than by attempting to describe them directly.

Leyton has argued that the generative approach provides a general framework for understanding cognition. Applications of the approach can be found in generative theories of memory (Leyton, 1992), categorization (Anderson, 1991; Feldman, 1997; Rehder, 2003), visual perception (Leyton, 1992), speech perception (Lieder et al., 1967), syntax (Chomsky, 1965)1, and music (Lehmann and Jackendoff, 1996). This paper offers a generative theory of similarity, a notion often invoked by models of high-level cognition. We argue that two objects are similar to the extent that they seem to have been generated by the same underlying process.

The literature on similarity covers settings that extend from the comparison of simple stimuli like tones and colored patches to the comparison of highly-structured objects like narratives. The generative approach is relevant to the entire spectrum of applications, but we are particularly interested in high-level similarity. In particular, we are interested in how similarity judgments draw on intuitive theories, or systems of rich conceptual knowledge (Murphy and Medin, 1985). Intuitive theories and generative processes are intimately linked: Murphy (1993), for example, defines a theory as “a set of causal relations that collectively generate or explain the phenomena in a domain.” Our generative framework should therefore help to explain how similarity judgments are guided by intuitive theories. Others have recognized the importance of this issue: Murphy and Medin (1985) suggest, for example, that “the notion of similarity must be extended to include theoretical knowledge.”

We develop a formal theory of similarity and compare it to two existing theories. The featural account (Tversky, 1977) suggests that the similarity of two objects is a function of their common and distinctive features, and the transformation account suggests that similarity depends on the number of operations required to transform one object into the other (Hahn et al., 2003). We show that versions of both approaches emerge as special cases of our model, and present an experiment that directly compares our model with the transformation account.

Generative processes and similarity

Before introducing our formal model, we describe several cases where the assessment of similarity relies on inferences about generative processes. Suppose we are shown

1The approach we have described should be distinguished from two usages of “generative” that are found in the linguistics literature. Generativity sometimes refers to the infinite use of finite means: for us, a generative process need not meet this criterion, although many interesting processes will. The second (and more central) usage refers to a grammar’s ability to generate the set of grammatical sentences: Chomsky (1965) defines a generative grammar as “a system of rules that in some explicit and well-defined way assigns structural descriptions to sentences.” A system of this sort need not be generative in our sense — in particular, it need not assume that structural descriptions have derivational histories. Generative grammars, however, are typically expressed using formalisms that do assign derivational histories to structural descriptions, and theories that assume the psychological reality of these histories are instances of the generative approach. Chomsky (1995) has rejected theories of this sort: “the ordering of operations [in grammatical theory] is abstract, expressing postulated properties of the language faculty of the brain, with no temporal interpretation implied.” Others, however, argue for linguistic theories that are generative in our sense (Marantz, To appear)
A prototype object and asked to predict what similar objects might exist in the world. There are two kinds of predictions: small perturbations of the prototype, or objects produced by small perturbations of the process that generated the prototype. The second strategy is likely to be more successful than the first, since many perturbations of the prototype will not arise from any plausible generative process, and thus could never appear in practice. By definition, however, an object produced by a small perturbation of an existing generative process will have a plausible causal history.

To give a concrete example, suppose the prototype is a bug generated by a biological process of growth (Figure 1i). The bug in i is a small perturbation of the prototype, but has no plausible generative history. The bug in iii does have a plausible generative history — it is easy to imagine how a perturbation of the process that produced ii could produce a bug with an extra segment. If we hope to find a bug that is similar but not identical to the prototype, we should look for iii rather than i.

A sceptic might argue that this prediction task can be solved by taking the intersection of the set of objects similar to the prototype and the set of objects that are likely to exist. The two sets could be computed by independent mental modules: the second set depends critically on generative processes, but the first set (and therefore the similarity module) need not. We think it more likely that the notion of similarity is ultimately grounded in the similarity module) need not. We think it more likely that the notion of similarity is ultimately grounded in the similarity module) need not. Yet generative processes are still important, and that it evolved for the purpose of capturing the intuitions behind the examples described thus far. The rigor of a computational theory is bought at a price, however, and we will only apply the theory to examples much simpler than those already given.

A computational theory of similarity

Given a domain D, we develop a theory that specifies the similarity between any two samples from D. A sample from D will usually contain a single object, but working with similarities between sets of objects is useful for some applications. We formalize a generative process as a probability distribution over D that depends on parameter vector θ.

Suppose that s_1 and s_2 are samples from D. We consider two hypotheses: H_1 holds that s_1 and s_2 are independent samples from a single generative process, and H_2 holds that the samples are generated from two independently chosen processes. Similarity is defined as the log likelihood ratio (Good, 1984), which measures the weight of evidence for H_1 compared to H_2:

$$\text{sim}(s_1, s_2) = \log \frac{P(s_1, s_2|H_2)}{P(s_1, s_2|H_1)}$$

$$= \log \frac{\int P(s_1|\theta)P(s_2|\theta)p(\theta)d\theta}{\int P(s_1|\theta)p(\theta)d\theta}$$

Equation 1 is not the only way to formalize the generative approach to similarity, and Jebara et al. (2004) describe an alternative that is motivated by similar intuitions. Our model has a clearer probabilistic interpretation than theirs, but the two may well perform similarly in practice.

For some applications, Equation 1 may be difficult to calculate and we will approximate it by replacing the
integrals with likelihoods at the maximum \textit{a posteriori} (MAP) values of \(\theta \):

\[
\text{sim}(s_1, s_2) = \log \left[\frac{P(s_1|\theta_{12})P(s_2|\theta_{12})p(\theta_{12})}{P(s_1|\theta_1)p(\theta_1)P(s_2|\theta_2)p(\theta_2)} \right]
\]

(2)

where \(\theta_{12} = \text{argmax}_\theta P(s_1, s_2|\theta) \), \(\theta_1 = \text{argmax}_\theta P(s_1|\theta) \), and \(\theta_2 = \text{argmax}_\theta P(s_2|\theta) \).

Similarity is symmetric under this measure: \(\text{sim}(s_1, s_2) = \text{sim}(s_2, s_1) \). Whether a symmetric measure is suitable will depend on the context in subtle ways. Consider, for example, the difference between the questions ‘How similar are \(s_1 \) and \(s_2 \)?’ and ‘How similar is \(s_1 \) to \(s_2 \)?’ If an asymmetric measure is required, the similarity of \(s_1 \) to \(s_2 \) could be defined as the probability that \(s_1 \) is produced by the process that generated \(s_2 \), or that \(s_2 \) is produced by the process that generated \(s_1 \). This paper, however, will focus on the symmetric case.

We now demonstrate our generative framework in action by deriving a featural model and a transformational model as special cases. \(^2\) Understanding the formal relationships between these models is important for choosing between them, an issue we will soon address.

Featural models

Suppose that objects are represented as binary feature vectors, and let \(s_1 \) and \(s_2 \) be two objects, \(s_1 \cup s_2 \) be the set of features shared by both objects, and \(s_1 \ominus s_2 \) and \(s_2 \ominus s_1 \) be the sets of features possessed by one object but not the other. Tversky’s contrast model proposes that

\[
\text{sim}(s_1, s_2) = \gamma_1 F(s_1 \cup s_2) - \gamma_2 F(s_1 \ominus s_2) - \gamma_3 F(s_2 \ominus s_1)
\]

where \(\gamma_1, \gamma_2, \) and \(\gamma_3 \) are positive constants and \(F(\cdot) \) measures the saliency of a feature set.

Let \(n \) be the number of features possessed by one or both of the objects. To apply our generative framework, let the domain \(D \) be the set of all \(n \)-place binary vectors. A generative process over \(D \) is specified by a \(n \)-place vector \(\theta \), where \(\theta^i \) is the probability that an object has value 1 on feature \(i \). We place independent beta priors on each \(\theta^i \):

\[
\theta^i \sim \text{Beta}(\alpha, \beta) \\
s^i \sim \text{Bernoulli}(\theta^i)
\]

where \(s^i \) is the \(i \)th feature value for object \(s \), \(\alpha \) and \(\beta \) are hyperparameters and \(\text{Beta}(\cdot, \cdot) \) is the beta function.\(^3\)

This generative process is known by statisticians as the beta-Bernoulli model, and has previously appeared in the psychological literature as part of Anderson’s rational analysis of categorization (Anderson, 1991).

Using Equation 1, we can show that

\[
\text{sim}(s_1, s_2) = k_1|s_1 \cup s_2| - k_2|s_1 \ominus s_2| - k_3|s_2 \ominus s_1|
\]

where \(k_1 = \log \left(\frac{\alpha + 1}{\alpha} \right) - \log \left(\frac{\alpha + \beta + 1}{\alpha + \beta} \right), k_2 = \log \left(\frac{\alpha + \beta + 1}{\alpha + \beta} \right), \) and \(F(X) = |X| \) is the cardinality of \(X \).

Under a suitable choice of generative process, then, our model becomes equivalent to a version of the contrast model where \(\gamma_2 = \gamma_3 \) and \(F(\cdot) = |\cdot| \). Our rederivation of Tversky’s result makes at least two contributions. First, it provides an interpretation of \(k_1 \) and \(k_2 \): these parameters are functions of \(\alpha \) and \(\beta \), which makes statements about properties of the world. \(\frac{\alpha}{\alpha + \beta} \) is the \textit{a priori} probability that an object has any given feature, and \(\alpha + \beta \) measures the confidence we should place in this probability. In contrast, the parameters \(\gamma_1, \gamma_2, \) and \(\gamma_3 \) in Tversky’s model are free parameters with no real meaning independent of the model. A second contribution is that our approach automatically provides a setwise similarity measure if \(s_1 \) and \(s_2 \) are sets of feature vectors rather than single objects. Setwise measures are needed by some psychological models (Osherson et al., 1990), but cannot be derived from the contrast model without additional assumptions.

Transformational models

The transformational approach holds that \(s_1 \) is similar to \(s_2 \) if \(s_1 \) can be readily transformed into \(s_2 \). Suppose we are given a set of objects \(D \) and a set of transformations \(T \). We assume that every transformation is reversible — if there is a transformation mapping \(s_1 \) into \(s_2 \), there must also be a transformation mapping \(s_2 \) into \(s_1 \). A generative process over \(D \) is specified by a prototype \(\theta \in D \) chosen from a uniform (and possibly improper) distribution over \(D \). To generate an object \(s \) from this process, we sample \(k \) from a geometric distribution, choose \(k \) transformations at random from \(T \), then apply them to the prototype:

\[
\theta \sim \text{Uniform}(D) \\
k \sim \text{Geometric}(\lambda) \\
t^i \sim \text{Uniform}(T) \\
s = t^k \cdot t^{k-1} \ldots t^1(\theta)
\]

where \(\lambda \) is a constant, and \(t^i \) is the \(i \)th transformation chosen. Intuitively, this process tends to generate small variations of the chosen prototype \(\theta \), where the permissible variations depend on the set of transformations.

We use Equation 2, and approximate each term in the expression using MAP settings of \(k \) and \(t \). The denominator drops out, and the numerator is approximated using

\[
P(s_1|\theta_{12})P(s_2|\theta_{12}) \\
\approx P(s_1|\theta_{12}, \hat{k}_1, \hat{t}_1)P(s_2|\theta_{12}, \hat{k}_2, \hat{t}_2)P(\hat{k}_1, \hat{k}_2, \hat{t}_1, \hat{t}_2) \\
= P(\hat{k}_1, \hat{k}_2, \hat{t}_1, \hat{t}_2)
\]

where \(\hat{k}_1 \) is the number of transformations needed to generate \(s_1 \) from the prototype \(\theta_{12} \), \(\hat{t}_1 \) is the set of these transformations, and \(\theta_{12}, \hat{k}_1, \hat{k}_2, \hat{t}_1 \) and \(\hat{t}_2 \) are set to values that maximize \(P(\theta_{12}, k_1, k_2, t_1, t_2|s_1, s_2, H_2) \). Since

\(^2\)Spatial models also emerge as a special case: see the supplementary information at \url{www.mit.edu/~ckemp/} for details, and for derivations of all results presented here.

\(^3\)If we want to weight features differently, a different \(\alpha \) and \(\beta \) can be used for each feature.
there is a cost for each transformation (the geometric
distribution encourages \(k_1 \) and \(k_2 \) to be small), the MAP
settings for \(k_1 \) and \(k_2 \) minimize the sum \(k_1 + k_2 \). The
minimal value is achieved when \(k_1 + k_2 \) is the length of
the shortest path joining \(s_1 \) and \(s_2 \), and \(\theta_{12} \) lies some-
where along this path. It is now straightforward to show
that \(\text{sim}(s_1, s_2) \) is inversely related to \(k_1 + k_2 \), or the
transformation distance between \(s_1 \) and \(s_2 \). We suspect
that a similar analysis can be given if we relax the as-
sumption that transformations are reversible, although
we leave the details for future work.

Choosing between models of similarity

We believe that the featural model, the transformational
model and our generative model offer precisely the same
expressive power. The featural model can capture an
arbitrary dataset perfectly if we have complete freedom
to choose the features, and so can the other models if we
have complete freedom to choose the transformations or
generative processes.\(^4\) It follows that all of the models
can mimic each other — given a particular choice of fea-
tures for the featural model, for example, there will be
transformations and generative processes that allow the
other models to make exactly the same predictions.

Even though the models have the same expressive
power, we can choose between them on grounds of ex-
planatory power. Whenever these models are applied,
advocates of each approach need to explain why they
chose the features, transformations, and generative pro-
cesses that they did, and these explanations are unlikely
to be equally convincing. Suppose, for example, that the
features needed by the featural model seem rather com-
plicated, and share only one property: all of them are
signatures of an underlying generative process. Keil’s
skunk example (Keil, 1989) is one case where this seems
to be true, and where the generative approach should
probably come out on top. We expect there to be other
cases where the featural model is judged superior, and
others still where the transformational approach gives
the most natural account of the data.

It may be possible to characterize the settings where
each of the three models is likely to prove the model
of choice. We do not attempt that here, but suggest
only that the generative approach is uniquely well-suited
to explaining high-level similarity judgments. High-level
judgments are likely to rely on intuitive theories, and
intuitive theories often specify exactly the kind of infor-
mation needed by the generative approach: information
about the causal histories of objects.

We also believe that there are low-level applications
where the generative approach is more explanatory than
the other approaches. To support this point and to com-
pare our approach to a published model, we designed an
experiment using colored strings as stimuli.

\(^4\)The model specified by Equation 1 can only capture sym-
metric similarity measures, but as mentioned earlier, there
are versions of the generative approach that are not subject
to this limitation.

Experiment

Models: We compared the transformational approach
to the generative approach in the domain of colored
strings. An advantage of choosing this domain is that
there are instances of the competing approaches that
seem natural but make different predictions. Two indi-
cations that the models are natural are that both draw
on previously published work, and that neither was de-
veloped specifically for this comparison.

The transformation model for binary strings uses
the five transformations proposed by Imai (1977) and
adopted by Hahn et al. (2003): insertion, deletion, phase
shift (shifting all squares one position to the right or left),
mirror-imaging (reflection about the central axis), and
reversal (the transformation that maps white squares
into black squares and vice versa). We extend these
transformations to ternary strings in the natural manner.
All of the transformations are weighted equally, and the
dissimilarity between two strings is defined as the num-
ber of transformations required to transform one into the
other.

We implement the generative approach using Hidden
Markov Models (HMMs), a class of generative processes
that is standard in fields including computational biology
and computational linguistics. A HMM is determined by
a set of internal states, a matrix of transition probabil-
ities \(q \) that specifies how to move between the states, and
a matrix of observation probabilities \(o \) that specifies how
to generate symbols from each state. To generate a se-
quence from a HMM, we choose an initial state from a
distribution \(\pi \), probabilistically generate a color using \(o \),
then probabilistically choose the next state using \(q \). We
continue until some stopping criterion has been satisfied.

A HMM can be represented using a vector \(\theta = \{ \pi, o, q \} \). Any given \(\theta \) induces a probability distribution
over the set of all strings, and we can therefore apply the
formal model developed above. For simplicity, we use
uniform priors on each component of \(\theta \) and follow the
MAP approach in Equation 2. MAP values of \(\theta \) were
computed using the EM algorithm (Murphy, 1998).

Task: We used a forced-choice triad task. Subjects
were shown a prototype string, and asked to decide
which of two strings was most similar to the prototype.
One of these strings was the ‘HMM string,’ the string
most similar to the prototype according to the gener-
ative model. The other was the ‘transformation string,’
the string most similar to the prototype according to
the transformational model. Each subject assessed 20
binary triads then 16 ternary triads. Five binary triads
are shown in Figure 2, and the full set is available from
www.mit.edu/~ckemp/.

The triads were chosen systematically to cover most
kinds of strings that can be represented using HMMs
with a handful of states. We generated a compre-
hsive set of HMM types, then designed a few triads for
each type. A HMM type includes an architecture (a
diagram with arrows indicating probable transitions be-
tween states) and a purity parameter for each state. A
pure state generates only one color, but a noisy state
generates multiple colors. Figure 2 shows several of the
HMM types used to generate binary strings. The HMM type in 2e moves between a state that generates white squares and another that generates black squares, and tends to generate several squares from each state.

Given a HMM type, we chose a prototype string and a HMM string consistent with the type. The HMM string was usually, but not always the same length as the prototype string. The transformation string was created by transforming the prototype string at a few key points. Two or three transformations were used to create most of the binary transformation strings. The ternary strings are longer, and between three and five transformations were used in most cases.

Results: Table 1 shows results for 12 subjects. There were 240 judgments overall for the binary strings (20 for each subject), and 73% of these judgments favored the generative model. For 17 out of the 20 triads, a majority of subjects chose the generative string, and no no triad clearly favored the transformation model (7 out of 12 subjects chose the transformation string on the most successful triad for this model). The general pattern of results was similar for the ternary strings, but this time a handful of triads clearly favored the transformation model. Overall, these results suggest that similarity judgments between sequences are sensitive to regularities that can be expressed using HMMs.

A possible response is that all of the prototype strings were consistent with simple HMMs, and it is not surprising that a model based on HMMs should perform better than an alternative model. It is true that our sample of strings was biased towards strings generated by simple processes, and is therefore unrepresentative of the set of all possible strings. We suggest, however, that samples from real-world domains are biased in precisely the same way — indeed, that is one of the motivations for our approach. Consider the set of all possible animals, which includes creatures like the manticore, a beast with a man’s face, a lion’s body and a scorpion’s tail. We can imagine animals that are much more bizarre than the manticore, but any sample of real-world animals will be biased towards animals generated by a relatively simple process — descent with modification.

Discussion

Our results suggest some conclusions about the generative and transformational approaches that apply well beyond the domain of strings. A major problem with the transformational account is that it does not distinguish between generic and non-generic configurations (Jepson and Richards, 1993). Consider the strings in Figure 2a. The transformation string is only two transformations away from the prototype string, but the transformation string is non-generic: since the dark squares appear in a clump, it has a Gestalt property that is not shared by the prototype string. Figure 3a shows another example. The difference between a.i and a.ii is that all the dots have been shifted by a small amount, but a.i is non-generic — it has a striking property that is missing from a.ii.

The generative approach deals neatly with generic and non-generic configurations. The configuration in a.i is most likely to have been generated by a process that produces dots arrayed along a line, and this process has no chance of producing a.ii. The configuration in a.ii is most likely to have been generated by a process that produces a line-shaped cloud of dots, and generating a stimulus like a.i would be an astonishing coincidence under such a process. It follows that a.i and a.ii are unlikely to have been generated by the same process, even though a very small transformation will convert one into the other.

Another way to state the problem is that simple transformations will not suffice for the transformational approach. Consider the stimuli in Figure 3b. Removing an edge between a pair of nodes must be an acceptable transformation, since b.ii is very similar to b.iii, which is identical except for a missing edge. Yet the remove edge...
transformation must be highly context-sensitive: since b.ii is more similar to b.iii than b.i, it must be more expensive to convert b.ii into b.i. This example suggests that each transformation must be assigned a cost that depends on global properties of the stimulus.

Colored strings are relatively unstructured objects, but we can handle more complex domains using processes that generate structured objects. Kemp et al. (2004), for example, describe a process that generates systems of relations. Analogies form one special family of comparisons between relational systems, and we believe that the generative approach offers a view of analogy that is is intriguingly different from previous approaches. Existing models generally assume that systems are analogous to the extent that there is a structure-preserving one-to-one map between their elements (Gentner, 1983). The generative approach, however, allows analogous systems to have very different numbers of elements, as long as they appear to have been produced by the same process. Consider, for instance, the graphs in Figure 3c. Even though there is a better structure-preserving map between c.ii and c.i, c.ii seems more analogous to c.iii. This is only one suggestive example, but we believe that the generative approach to analogy deserves further investigation.

We have argued that similarity judgments are inferences about generative processes, and suggested how this idea applies to domains ranging from the simple (feature vectors) to the complex (graphs and other structured objects). The generative processes formalized here have been simpler than the processes that appear in people’s intuitive theories, but we are optimistic that our framework will help explain how similarity judgments are guided by sophisticated theoretical knowledge.

Acknowledgments We thank Ashish Kapoor for pointing us to (Jebara et al., 2004), and NTT Communication Science Laboratories and DARPA for research support. JBT was supported by the Paul E. Newton Career Development Chair.

Figure 3: Each central object is a small perturbation of the object on the left, but seems more similar to the object on the right.

References

