Abnormalities in chemokine levels in schizophrenia and their clinical correlates

Title

Permalink

https://escholarship.org/uc/item/66c8k5dd

Authors

Hong, S
Lee, EE
Martin, AS
et al.

Publication Date

2017-03-01

DOI

10.1016/j.schres.2016.09.019

Peer reviewed
Abnormalities in chemokine levels in schizophrenia and their clinical correlates

Suzi Hong, Ph.D. a, b, Ellen E. Lee, M.D. a, Averia Sirkin Martin, Ph.D. a, c, Benchawanna Soontornniyomkij, Ph.D. a, Virawudh Soontornniyomkij, M.D. a, Cristian L. Achim, M.D. a, Chase Reuter, M.S. a, c, Michael R. Irwin, M.D. d, Lisa T. Eyler, Ph.D. a, e, Dilip V. Jeste, M.D. a, c, f

a Department of Psychiatry, University of California, San Diego, USA
b Department of Family Medicine and Public Health, University of California, San Diego, USA
c Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, USA
d Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience, University of California, Los Angeles, USA
e Desert-Paciﬁc Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, USA
f Department of Neurosciences, University of California, San Diego, USA

Abstract

Chemokines are promising biomarkers of immune activation and inﬂammation, but evidence for chemokine abnormalities in schizophrenia and their relationship to clinical factors remains inconclusive. We aimed to understand chemokine-related diagnostic differences and clinical correlates using a comprehensive panel and studying a large, well-characterized sample of adults with and without schizophrenia. We studied 134 outpatients with schizophrenia or schizoaffective disorder and 112 healthy comparison (HC) individuals, 26 to 65 years of age. Clinical measures were obtained, and plasma levels of 11 chemokines were assessed using multiplex immunoasays. Schizophrenia vs. HC differences were tested for each chemokine, adjusting for age, gender, body mass index, and current smoking status. We also examined whether age and gender relationships differed between diagnostic groups. Using logistic regression, we created a Chemokine Index (CI) and explored its clinical correlates. Levels of monocyte chemoattractant protein-1 (MCP-1/CC2), macrophage inﬂamatory protein-1β (MIP-1β/CC4), Eotaxin-1 (CC11), thymus and activation-regulated chemokine (TARC/CC17), and macrophage-derived chemokine (MDC/CC22) were signiﬁcantly higher in persons with schizophrenia than HCs. Group differences in TARC were reduced after adjusting for covariates. The CI, a linear combination of Eotaxin-1 and MDC levels, was positively associated with age, duration of schizophrenia, and severity of negative symptoms. Levels of chemokines with neuroimmune regulatory effects were higher in individuals with schizophrenia, particularly in older and chronic patients. Treatments aimed at normalizing chemokine levels might improve mental and physical health among schizophrenia patients as they age.

1. Introduction

Persons with schizophrenia have increased morbidity and mortality rates from medical illnesses, especially cardiovascular diseases (Brown, 1997; Inskip et al., 1998). Schizophrenia has been associated with immune dysfunction and inﬂammation (Dickerson et al., 2016), which may contribute to accelerated aging and greater comorbidity and mortality (Kirkpatrick et al., 2008). The large CATIE study reported higher levels of inﬂamatory markers (Meyer et al., 2009) and elevated coronary heart disease risk in people with schizophrenia, especially among women (Goff et al., 2005). Autoimmune diseases and chronic inﬂammatory conditions occur with higher frequency in persons with schizophrenia (Benros et al., 2014b). Individuals with schizophrenia reportedly have increased plasma concentrations of C-reactive protein, interleukin (IL)-6, IL-6 receptor, tumor necrosis factor-α, and soluble IL-2 receptor (Joseph et al., 2015; Lin et al., 1998; Maes et al., 1995; Mondelli et al., 2015; Naudin et al., 1996). Also, treatment with non-steroidal anti-inﬂamatory cyclooxygenase-2 inhibitors was shown to reduce psychotic symptoms in patients with recent-onset psychosis but not chronic psychosis (Nitta et al., 2013; Rapaport et al., 2005). Taken together, immune activation/inflammation is associated with schizophrenia, but more comprehensive investigations are necessary to specify the nature of immune alterations and their clinical correlates.

Chemokines constitute a family of small (7–12 kDa) cytokines and induce directed chemotaxis in nearby responsive cells. Chemokines
play an integral role in immune function, mediating leukocyte migration and trafficking, and inflammatory responses (Foxman et al., 1997; Murphy et al., 2000b; Springer, 1994). Recent studies suggest direct roles of chemokines in the central nervous system (CNS), including neuroendocrine function, neurotransmission, and neurodegeneration (Reaux-Le Gogzio et al., 2013). Elevated levels of chemokines in the CNS and blood are observed in several neuroinflammatory disorders such as multiple sclerosis (Balashov et al., 1999; Sorensen et al., 1999), as well as psychiatric conditions including depression, bipolar disorder, and schizophrenia (Eyre et al., 2016; Panizzutti et al., 2015; Stuart and Baune, 2014).

The literature on chemokine levels in schizophrenia is informative but has limitations. Most studies examined a relatively small number of chemokines in male-dominant samples. These investigations vary widely in considering potential demographic and clinical correlates in analyzing schizophrenia-chemokine relationships (Beumer et al., 2012; Xu et al., 2015). Monocyte chemoattractant protein (MCP)-1 is the best-studied chemokine, but the findings are equivocal with nearly equal numbers of studies showing significantly higher (Beumer et al., 2012; Dimitrov et al., 2013; Domenici et al., 2010; Reale et al., 2011; Zakharyan et al., 2012) or similar (Assevero et al., 2013; Brambilla et al., 2014; Di Nicola et al., 2013; Martinez-Cegottoahengo et al., 2012; Schwarz et al., 2012; Teixeira et al., 2008) levels between schizophrenia patients and healthy comparison subjects (HCs). There are also inconsistent findings for IL-8 (Dennison et al., 2012; Di Nicola et al., 2013; Erbapi et al., 2001; Kaminska et al., 2001; Maes et al., 2002; O’Brien et al., 2008; Ramsey et al., 2013; Reale et al., 2011; Zhang et al., 2002), Eotaxin-1 (Assevero et al., 2013; Domenici et al., 2010; Pedrini et al., 2014; Ramsey et al., 2013; Teixeira et al., 2008), and macrophage-derived chemokine (MDC; Brambilla et al., 2014; Dimitrov et al., 2013; Domenici et al., 2010; Ramsey et al., 2013; Schwarz et al., 2012). Other chemokines, including macrophage inflammatory protein (MIP)-1α (Assevero et al., 2013; Brambilla et al., 2014; Dimitrov et al., 2013; Domenici et al., 2010; Nikkila et al., 2002; Schwarz et al., 2012), and interferon-induced protein-10 (IP-10; Assevero et al., 2013; Brambilla et al., 2014; Dimitrov et al., 2013; Domenici et al., 2010; Schwarz et al., 2012), and interferon-induced protein-10 (IP-10; Assevero et al., 2013; Brambilla et al., 2014; Dimitrov et al., 2013; Teixeira et al., 2008; Zakharyan et al., 2012), and interferon-induced protein-10 (IP-10; Assevero et al., 2013; Brambilla et al., 2014; Dimitrov et al., 2013; Teixeira et al., 2008) have not been shown to differ between people with schizophrenia and HCs. Finally, MCP-4 (Teixeira et al., 2008), Eotaxin-3 (Schwarz et al., 2012), fractalkine (Dimitrov et al., 2013), and thymus and activation-regulated chemokine (TARC) have received little attention in schizophrenia. Men with schizophrenia have shown higher chemokine levels (e.g., IL-8, MCP-1, MDC, MIP-1α, and MIP-1β) than women with schizophrenia in some studies (Beumer et al., 2012; Domenici et al., 2010; Ramsey et al., 2013).

We assessed plasma levels of 11 chemokines in a well-characterized group of outpatients with schizophrenia and HCs. These chemokines included eight C motif chemokine ligands: MCP-1 (CCL2), MIP-1α (CCL3), MIP-1β (CCL4), Eotaxin-1 (CCL11), MCP-4 (CCL13), TARC (CCL17), MDC (CCL22), Eotaxin-3 (CCL26); two C-X-C motif ligands: IL-8 (CXCL8) and IP-10 (CXCL10); and one C motif ligand: fractalkine (CX3CL1). Our panel contained chemokines of both innate and adaptive immunity with inflammatory (MCP-1, MIP-1α, MIP-1β, MCP-4, Eotaxin-3, IL-8, IP-10), and dual (both inflammatory and homeostatic; Eotaxin-1, TARC, MDC, and fractalkine) functions (Zlotnik and Yoshie, 2012), and also includes chemokines with known roles in the CNS (MCP-1, MIP-1α, MIP-1β, Eotaxin-1, IL-8, IP-10, and fractalkine) (Stuart et al., 2015). We compared levels of each chemokine in our panel between people with schizophrenia and HCs. For those plasma chemokines that differed between the two groups, we examined whether the differences remained significant after adjusting for covariates. We also examined subgroups of patients who were more comparable to the HCs on body mass index (BMI) and smoking. The relationship of age and gender to the chemokines was examined separately in the persons with schizophrenia and HCs. Finally, we created a Chemokine Index (CI) based on a combination of markers that differed most between the two diagnostic groups, and explored clinical correlates of the Index in the two groups.

2. Experimental/materials and methods

2.1. Participants

The protocol was approved by the University of California, San Diego (UCSD) Human Research Protections Program. Participants provided written informed consent. These included 134 outpatients with schizophrenia or schizoaffective disorder (hereafter referred to collectively as schizophrenia) and 112 HCs with no history of major neuropsychiatric disorder, recruited from the greater San Diego community and enrolled in an ongoing study of aging in schizophrenia. Schizophrenia diagnosis was confirmed using the Structured Clinical Interview for the DSM-IV-TR (SCID; First et al., 2002). Participants were recruited using a structured multi-cohort design, with the two groups being age-matched by decade (26–35, 36–45, 46–55, and 56–65 years). Subject selection criteria have been previously described (Joseph et al., 2015).

2.2. Sociodemographic and clinical characteristics

Sociodemographic characteristics (i.e., age, education, gender, race/ethnicity, and smoking status) and illness-related variables (i.e., duration of schizophrenia and daily antipsychotic medication dosages (Sweilich et al., 2014) were ascertained through participant interviews and reviews of records (with HIPAA authorization). The Multisystem Disease Risk Score (Carroll et al., 2015) was calculated by summing the z-scores of high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, hemoglobin A1c, glucose, insulin, and C-reactive protein levels in blood. The Framingham 10-year Coronary Heart Disease Relative Risk Score (Wilson et al., 1998) was also computed (Jin et al., 2011).

2.3. Psychosocial and cognitive assessments

Psychotic symptoms were evaluated with interviewer-administered Scales for Assessment of Positive Symptoms and Negative Symptoms (SAPS and SANS, respectively) (Andreasen, 1983, 1984), depression with the Patient Health Questionnaire—9 Item Version (PHQ-9; Kroenke and Spitzer, 2002), health-related quality of life and functioning with the physical and mental health composite scores from the Medical Outcomes Study 36-item Short Form (SF-36; Ware and Sherbourne, 1992), and medical comorbidity with the Cumulative Illness Rating Scale (CIRS; Parmelee et al., 1995). Current medications, including psychotropic and anti-inflammatory agents, were recorded for both groups. Assessment of cognitive deficits focused on executive functioning (Fucetola et al., 2000; Wobrock et al., 2008), based on three subtests from the Delis-Kaplan Executive Function System (D-KEFS; Delis et al., 2001).

2.4. Chemokine assays

Fasting blood was collected in EDTA-treated vacutainers between 7:00 am–12:00 pm through an intravenous catheter inserted into an antecubital vein using minimal tourniquet. White blood cell count and hematocrit were assessed by the UCSD Clinical Laboratory using standard procedures. Plasma was stored at ~ 80 °C until assays were performed. Plasma chemokine levels were quantified using Meso Scale Discovery (MSD) MULTI-SPOT® Assay System and analyzed on a SEC-TOR Imager 2400 instrument (Rockville, MD, USA). Using MSD Discovery Workbench® analysis software, standard curves were formed by fitting ECL signal from calibrators to a 4-parameter logistic model with a 1/y2 weighting. Samples were run in duplicates, using V-PLEX Human Biomarker panels (Catalog # K151A0H-2) to measure the...
chemokines. Human fractalkine/CX3CL1 kit (Catalog # K151MKD-2) was used to assay fractalkine levels. V-PLEX kits are fully validated according to fit-for-purpose principles and the FDA’s analytical validation guidelines according to the manufacturer (MSD). The laboratory technician performing the assays was “blind” to the subject’s diagnosis. Intra- and inter-assay variances for chemokines were ≥10% except the intra-assay variance (19.4%) and inter-assay variance (19.5%) for Eotaxin-3, inter-assay variance for MCP-1 (16.5%), and intra-assay variance for MIP-1α (19.8%). The lowest detected level for each chemokine was as follows: 0.10 pg/mL (MCP-1), 1.62 pg/mL (MIP-1α), 0.86 pg/mL (MIP-1β), 2.94 pg/mL (Eotaxin-1), 1.24 pg/mL (MCP-4), 0.131 pg/mL (TARC), 4.22 pg/mL (MDC), 1.15 pg/mL (Eotaxin-3), 0.06 pg/mL (IL-8), 0.12 pg/mL (IP-10), and 9.58 pg/mL (fractalkine). No sample showed chemokine levels below the detection limits.

2.5. Statistical analysis

Values of all chemokines were log10 transformed to approximate a normal distribution. Independent samples t-tests and Chi-square analysis were used to compare continuous and discrete sample characteristics, respectively. Cohen’s d effect sizes were calculated for group differences for continuous variables, and values ≥0.30 were interpreted as greater than a small effect. The Success Rate Difference (SRD) was calculated for categorical variables as the group difference between the percent of each reference category versus all others (Kraemer and Kupfer, 2006). The SRD ranges from −1 to +1 with zero as its null value, and values ≥0.17 were interpreted as greater than a small effect. Chemokine data for MCP-4, MIP-1α, and TARC were only available in a subgroup of 155 subjects (84 schizophrenia and 71 HC).

Based on the literature regarding factors that might impact chemokine levels in an inflammatory state in general or in schizophrenia specifically, we conducted a general linear model to examine the effect of group when age, gender, BMI, and current smoking status were entered as covariates. Additionally, because BMI and smoking status were markedly different between the groups, we tested whether smaller subgroups of patients who resembled HCs on BMI and smoking also differed from them in chemokine levels.

To create a single CI, we first conducted a forward stepwise logistic regression with group as the dependent variable. The CI was calculated for each participant as a linear combination of the intercept and the value of each significant chemokine weighted by its parameter estimate from the logistic regression model. We then explored potential associations between clinical variables and the CI by examining Pearson correlations in both persons with schizophrenia and HCs.

3. Results

There was, as expected, no significant difference in age or gender between the people with schizophrenia and HCs (Table 1). The people with schizophrenia had a slightly lower proportion of Caucasians, lower education level, greater cigarette smoking, higher BMI, greater medical comorbidity and disease risk, more severe depressive symptoms, and poorer executive functioning than HCs. Persons with schizophrenia were more likely to be taking psychotropic medications and anti-inflammatory agents. Both groups had normal hematological tests and did not have clinical evidence of fever or infection, although total white blood cell counts were somewhat higher in the persons with schizophrenia.

Levels of five CC chemokines (MCP-1, MIP-1β, Eotaxin-1, TARC, and MDC) were significantly higher in the people with schizophrenia than in the HCs with medium Cohen’s d effect sizes (Table 2). Effect sizes for the group difference were not notably reduced after adjusting for covariates (Table 3), except in the case of TARC, where the effect size fell from d = −0.38 to d = −0.25. When subsets of non-smoking schizophrenia (n = 64) and HC participants (n = 105) were compared, there were still medium to large effect sizes for the group difference.

Table 1
Demographic and clinical characteristics of healthy comparison vs. schizophrenia groups.

<table>
<thead>
<tr>
<th></th>
<th>Healthy comparison</th>
<th>Schizophrenia</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Age (years)</td>
<td>112</td>
<td>48.4</td>
<td>12.0</td>
</tr>
<tr>
<td>Gender (N/%women)</td>
<td>64/57%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race (N/%Caucasian)</td>
<td>68/61%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education (N/%high school and below)</td>
<td>16/14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass index</td>
<td>105</td>
<td>27.9</td>
<td>7.2</td>
</tr>
<tr>
<td>Current smoking status (N/%smokers)</td>
<td>73/52%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illness duration (years)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SAPS total score</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SANS total score</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Antipsychotic dosage (total WHO DDD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PISQ severity score</td>
<td>109</td>
<td>1.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Psychotropic medication (N/%on one or more)</td>
<td>76/6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-inflammatory medication (N/%on one or more)</td>
<td>18/16%</td>
<td>41/31%</td>
<td></td>
</tr>
<tr>
<td>Multi-system disease risk score</td>
<td>87</td>
<td>-3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>SF-36 physical composite scale</td>
<td>109</td>
<td>52.2</td>
<td>8.2</td>
</tr>
<tr>
<td>SF-36 mental composite scale</td>
<td>105</td>
<td>54.6</td>
<td>5.4</td>
</tr>
<tr>
<td>CIRS - total score</td>
<td>93</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>CIRS - severity index</td>
<td>93</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Executive functioning composite*</td>
<td>112</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Framingham CHD risk score</td>
<td>103</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>White blood cell count</td>
<td>105</td>
<td>5.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>104</td>
<td>41.1</td>
<td>3.7</td>
</tr>
</tbody>
</table>

*Student’s t, χ² = Pearson’s chi-square, SRD = success rate difference, WHO DDD = World Health Organization defined daily dose, CHD = coronary heart disease, SF-36 = Medical Outcome Survey 36-item Short Form, CIRS = Cumulative Illness Rating Scale, SAPS = Scale for the Assessment of Positive Symptoms, SANS = Scale for the Assessment of Negative Symptoms, PISQ = Patient Health Questionnaire.

** and *** = significant group difference at ≤0.001, 0.01 and 0.05, respectively.

* For effect sizes Cohen’s d and SRD were calculated for continuous and categorical variables, respectively. SRD ranges from −1 to +1.

* The Delis-Kaplan Executive Function System (D-KEFS), (62) raw scores were converted to z-scores and coded such that higher scores represented better performance; mean z-score across tasks was used as an executive functioning composite score.

Please cite this article as: Hong, S., et al., Abnormalities in chemokine levels in schizophrenia and their clinical correlates, Schizophr. Res. (2016), xxx–xxx.
for all five chemokines (Cohen's d from -0.30 to -0.50). Similarly, when subsets of non-obese patients (n = 60) were compared to non-obese HC participants (n = 84), there were medium to large group effect sizes for all chemokines, with some diagnostic effects slightly larger in this non-obese subsample than in the total sample that included the full range of BMIs (Cohen's d from -0.43 to -0.77).

In the above general linear model (Table 3), we observed main effects of age on MCP-1 and Eotaxin-1 (higher values in older participants) and main effects of gender on TARC and MDC (women > men for TARC; men > women for MDC). In a separate model with age, gender, and all their interactions, no chemokine showed a group-specific gender association or any age relationships that depended on either group or gender.

To create the CI, we entered MCP-1, MIP-1β, Eotaxin-1, and MDC in a forward stepwise fashion into a logistic regression with group membership as the dependent variable; the final model was significant (χ² (1) = 20.7, p < 0.001). MCP-1 was entered on the first step, and Eotaxin-1 entered on the second step. In the final model, which correctly identified individuals as members of the schizophrenia vs. HC groups 64% of the time, MDC (Wald test = 9.7, p = 0.002), and Eotaxin-1 (Wald test = 7.9, p = 0.005) levels both significantly distinguished patients from HCs, and so this model was used to calculate the CI. The equation used for calculating the CI was: CI = ± 1.96 × SE (Eotaxin-1) + 1.96 × SE (MDC). As expected, the CI was higher in persons with schizophrenia (4.58 ± 0.27) than in HCs (4.59 ± 0.23; t = -5.26, p < 0.0001).

Schizophrenia patients with a higher CI were older, had longer durations of illness, and had more negative symptoms. Among the HCs, CI was higher in women, individuals with higher levels of subclinical depressive symptoms, worse self-rated mental well-being, and greater overall severity of generally mild medical illnesses (Table 4).

4. Discussion

Plasma levels of five CC chemokines were greater in schizophrenia compared to HC. MCP-1/CCL2, MIP-1β/CCL4, Eotaxin-1/CCL11, TARC/CCL17, and MDC/CCL22. Eotaxin-1 and MDC were particularly useful in distinguishing between the schizophrenia and HC groups, although they should not be regarded as diagnostic markers. The group difference in TARC levels decreased considerably after adjusting for age, gender, BMI, and smoking, suggesting that it was primarily related to demographic factors. Our findings add to studies of MCP-1 in schizophrenia that show significantly higher levels compared to HCs (Beumer et al., 2012; Dimitrov et al., 2013; Domencic et al., 2010; Reale et al., 2011; Zakharyan et al., 2012), in contrast to other reports of no group differences (Asevedo et al., 2013; Brambilla et al., 2014; Di Nicola et al., 2013; Martinez-Cengotitabengoa et al., 2012; Schwarz et al., 2012; Teixeira et al., 2008). The existing literature presents inconsistent findings for Eotaxin-1 (Asevedo et al., 2013; Brambilla et al., 2014; Dimitrov et al., 2013; Domencic et al., 2010; Ramsey et al., 2013; Schwarz et al., 2012; Teixeira et al., 2008) and MDC (Brambilla et al., 2014; Dimitrov et al., 2013; Domencic et al., 2010; Pedrini et al., 2014; Ramsey et al., 2013; Schwarz et al., 2012) and negative findings for MIP-1β in most reports (Beumer et al., 2012; Brambilla et al., 2014; Dimitrov et al., 2013; Domencic et al., 2010; Schwarz et al., 2012). In contrast to the C\(\text{X}\)C chemokine family, all C\(\text{X}\)C and C\(\text{X}\)C\(\text{C}\) chemokines examined in our study did not differ between the two groups. Together, our findings suggest potential differences in neuroimmune regulatory chemokines in schizophrenia, although the link between structure and functions of chemokines in schizophrenia is unclear.

Two beta chemokines with dual homeostatic and inflammatory functions, MDC and Eotaxin-1, had particularly strong relationships to depressive symptoms, MDC and Eotaxin-1, had particularly strong relationships to depressive symptoms, worse self-rated mental well-being, and greater overall severity of generally mild medical illnesses. For example, in a separate model, the CI was higher in persons with schizophrenia (4.58 ± 0.27) than in HCs (4.59 ± 0.23; t = -5.26, p < 0.0001).
in HC's may suggest a statistical anomaly. Unlike some studies (Asevedo et al., 2013; Martinez-Cengotibangoa et al., 2012) we did not observe associations of cognitive (executive) function performance with chemokine levels. Further work is needed to examine whether other aspects of cognition might be related to chemokine elevations in schizophrenia. A number of the chemokine levels were age- and gender-related. Identifying specific gender and/or age groups among schizophrenia patients that exhibit immune dysregulation may be clinically valuable.

Our study has several limitations. This cross-sectional investigation of chronic outpatients does not provide direct evidence for the chemokines’ involvement in schizophrenia pathophysiology. Also, there is a possibility of type I errors as we did not correct for multiple comparisons in our univariate analyses. Although group effect sizes persisted after statistically adjusting for factors like BMI and smoking and examining non-smoking and non-obese subsamples, both these approaches have their limitations. Longitudinal studies would help in examining whether changes in BMI or physical health precede changes in chemokines or vice versa. Finally, our results may not apply to persons with acute or first-episode schizophrenia or antipsychotic-naïve patients.

Longitudinal and functional investigations of chemokines and their receptors will advance the field in testing whether these biomarkers predict changes in clinical severity, and possibly contribute to pathophysiological processes in schizophrenia. Future research is needed to evaluate whether treatments that normalize chemokine dysregulation may ameliorate psychopathology among chronic schizophrenia patients.

Role of the funding source

This study was supported in part by NIH grants 5R01MH094151-04 and 5T2D MH019934-21 (Jeste), UL1 RR031980 for the UCSD Clinical and Translational Research Institute, the VADesert-Pacific Mental Illness Research Education and Clinical Center (Eyler), and UC San Diego Stein Institute for Research on Aging. Writing of this work is also supported in part by an NIH grant 1R01HL126056 (Hong).

Conflicts of interest

None of the authors had any financial conflict of interest with the subject matter of this study.

Contributors

Dr. Hong wrote the first draft of the manuscript, performed literature searches, and conducted analyses. Drs. Lee and Martin performed literature searches and conducted analyses. Dr. Benros contributed to manuscript preparation. Dr. Benros performed all statistical analyses. Dr. Irwin wrote sections of the manuscript. Drs. Eyler and Jeste designed the study and wrote the protocol. All the authors contributed to and approved the submitted manuscript.

Acknowledgement

We thank Rebecca Daly for her considerable contributions to data management and analysis for the project.

References

Andreasen, N.C., 1983. Scale for the Assessment of Negative Symptoms (SANS). University of Iowa, Iowa City, IA.
Andreasen, N.C., 1984. Scale for the Assessment of Positive Symptoms (SAPS). University of Iowa, Iowa City, IA.

Table 4

| Table 4 Pearson correlations of demographic and clinical variables with chemokine index based on eotaxin-1 and MDC levels in schizophrenia and healthy comparison groups. |
|---------------------------------|---------------------------------|
| Schizophrenia | Healthy comparison |
| r or r* | p |
| r or r* | p |
| Age (years) | 0.3* | 0.067 | 0.21 | 0.12 |
| Gender | 1.1* | 0.26 | 2.1** | 0.04 |
| Race | 1.8* | 0.07 | 0.23* | 0.82 |
| Education (years) | 0.14* | 0.89 | -0.84* | 0.40 |
| Body mass index | -0.16 | 0.06 | 0.05 | 0.60 |
| Current smoking status | -1.3* | 0.32 | -1.5* | 0.14 |
| Illness duration (years) | 0.21* | 0.02 | - | - |
| SAPS-total | 0.01 | 0.87 | - | - |
| SANS-total | 0.18* | 0.04 | - | - |
| Antipsychotic daily dosage (total WHO DDD) | -0.05 | 0.60 | - | - |
| Depressive symptoms (PHQ-9 severity score) | 0.01 | 0.95 | 0.28** | 0.003 |
| Psychotropic medication | -0.28* | 0.78 | 0.13* | 0.20 |
| Anti-inflammatory medication | -0.3* | 0.97 | -0.66* | 0.51 |
| Multisystem disease risk score | 0.04 | 0.70 | 0.21* | 0.05 |
| SF-36, physical composite scale | 0.01 | 0.90 | -0.11 | 0.26 |
| SF-36, mental composite scale | 0.01 | 0.87 | -0.20* | 0.04 |
| CIRS- total score | 0.13 | 0.16 | 0.30** | 0.003 |
| CIRS- severity score | 0.04 | 0.66 | 0.26* | 0.01 |
| Executive functioning composite | -0.11 | 0.20 | -0.05 | 0.64 |
| Framingham coronary heart disease risk score | 0.04 | 0.68 | 0.16 | 0.10 |

r = Pearson’s correlation, SAPS = Scale for the Assessment of Positive Symptoms, SANS = Scale for the Assessment of Negative Symptoms, WHO DDD = World Health Organization defined daily dose, PHQ = patient health questionnaire, SF-36 = Medical Outcome Survey 36-item Short Form, CIRS = Cumulative Illness Rating Scale; * and ** = significant difference at 0.01 and 0.05, respectively.

* t = Student’s t.

Role of the funding source

This study was supported in part by NIH grants 5R01MH094151-04 and 5T2D MH019934-21 (Jeste), UL1 RR031980 for the UCSD Clinical and Translational Research Institute, the VADesert-Pacific Mental Illness Research Education and Clinical Center (Eyler), and UC San Diego Stein Institute for Research on Aging. Writing of this work is also supported in part by an NIH grant 1R01HL126056 (Hong).

Conflicts of interest

None of the authors had any financial conflict of interest with the subject matter of this study.

Contributors

Dr. Hong wrote the first draft of the manuscript, performed literature searches, and conducted analyses. Drs. Lee and Martin performed literature searches and conducted analyses. Dr. Benros contributed to manuscript preparation. Dr. Benros performed all statistical analyses. Dr. Irwin wrote sections of the manuscript. Drs. Eyler and Jeste designed the study and wrote the protocol. All the authors contributed to and approved the submitted manuscript.

Acknowledgement

We thank Rebecca Daly for her considerable contributions to data management and analysis for the project.

References

Andreasen, N.C., 1983. Scale for the Assessment of Negative Symptoms (SANS). University of Iowa, Iowa City, IA.
Andreasen, N.C., 1984. Scale for the Assessment of Positive Symptoms (SAPS). University of Iowa, Iowa City, IA.

Please cite this article as: Hong, S., et al., Abnormalities in chemokine levels in schizophrenia and their clinical correlates, Schizophr. Res. (2016),...

