Title
DEUTERIUM ISOTOPE EFFECTS ON HYDROGENATION OF CARBON MONOXIDE OVER RHODIUM

Permalink
https://escholarship.org/uc/item/66c933cv

Authors
Logan, M.A.
Somorjai, G.A.

Publication Date
1984-12-01
DEUTERIUM ISOTOPE EFFECTS ON HYDROGENATION OF CARBON MONOXIDE OVER RHODIUM

M.A. Logan and G.A. Somorjai

December 1984
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Isotopic substitution of deuterium for hydrogen can modify the rate of carbon monoxide hydrogenation. Reports indicate that the rate of methane formation over ruthenium decreased, \(^1\) increased\(^2\) or remained the same, \(^4,5\) over Ni increased\(^6,7,8\) or remained the same\(^4,5\) and over a Co/ThO\(_2\) Kieselguhr catalyst increased upon substitution of deuterium. In this note we report an "equilibrium deuterium" isotope effect during methanation over rhodium polycrystalline foils; that is the rate of methane formation increased when D\(_2\) was used as a reactant instead of H\(_2\). The rate of CD\(_4\) formation was found to be 1.5 times faster than the rate of CH\(_4\) formation under the conditions used in this study (CO:H\(_2\) 1:2 6 atm total pressure 250-450°C). This result is similar to that found on Ru by Kellner and Bell.\(^2\) The pressure dependence of the reaction is -1.0 ± 1 order in CO and +1.0±1 order in H\(_2\), which implies competitive adsorption\(^16\) of these two molecules on the surface. This data along with an activation energy of 25 kcal/mol for methane formation indicate
that a hydrogenation step is rate limiting, as proposed by Kellner and Bell over Ru catalysts.

Experimental

All the experiments were carried out in an ultrahigh vacuum (UHV)/high pressure apparatus designed for combined UHV surface analysis and high pressure reaction studies using small surface area catalyst samples, as described in detail previously. This system is equipped with four grid electron optics for LEED and AES, an ion gun for crystal cleaning, a quadrupole mass spectrometer, and a retractable internal isolation cell that constitutes part of a microbatch reactor operating in the 10^{-2} - 20 atm pressure range. The reaction cell and the external recirculation loop were connected to an isolatable pressure gauge, a magnetically driven micropump for reaction gas circulation and a gas chromatograph sampling valve. Hydrocarbon product formation was monitored with HP5793 gas chromatograph equipped with a 12' x 1/8" poropak N column and a flame ionization detector.

The rhodium foils, obtained from Engelhard (99.8%), were spotwelded to a rotatable manipulator using a series of Ta and Cu supports, that enabled these to be resistively heated to 1300 K without significant heating of any other part of the chamber. Both foil faces (front and back) were cleaned by repeated oxygen treatment and argon ion sputtering followed by annealing until no impurities (B, C, O, Si or S) were detected by AES. Research purity H_{2} (Matheson grade ≥ 99.99% atomic purity) was passed through molecular sieve trap in a dry ice/acetone
bath prior to use. Deuterium was obtained from Liquid Carbonic (99.9%) and passed through a liquid nitrogen trap prior to use.

Product formation was followed by gas chromatography. Initial reaction rates were determined graphically from the initial slopes of product accumulation curves as a function of time. They were reproducible to within 5%. Blank experiments (CO+H₂ 1:2, 6 atm, up to 400°C) on Rh covered with graphitic carbon formed by heating the crystal in a hydrocarbon atmosphere at 600°C, show a low level of catalytic activity, never higher than 10% of the activity measured for clean Rh at any given reaction temperature.

Results and Discussion

The catalytic hydrogenation of carbon monoxide has been investigated on rhodium polycrystalline foils. Typical turnover frequencies (defined as product molecules/Rh atom-second) for methane production were .26 at 300°C CO/H₂ = .33 and 6 atm total pressure; and 1.0 at 350°C CO/H₂ = .33 and 6 atm total pressure. These turnover frequencies were calculated using the surface atomic density of Rh(111) (1.6 x 10¹⁵ Rh atoms/cm²) and initial reaction rates. A typical product distribution for the reaction is shown in Table 1.
Table 1

<table>
<thead>
<tr>
<th>Product</th>
<th>T.F. (molecules/Rh atom-sec)</th>
<th>mole %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>0.26</td>
<td>95</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>0.01</td>
<td>4</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>0.003</td>
<td>1</td>
</tr>
<tr>
<td>C₄⁺</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

Under all the conditions of this study, the main product from the reaction is methane with small amounts of ethane and propane also being produced. The only by-product of the reaction was found to be water.

Figure 1 displays an Arrhenius plot for CH₄ formation, from which an activation energy for methanation on Rh polycrystalline foils of 25±0.5 kcal/mol is calculated. Also shown in Figure 1 is the corresponding plot when deuterium was substituted for hydrogen in the reaction mixture. An isotope effect is clearly observed, the rate of methane formation increased by a factor of 1.5 when deuterium was used as a reactant.

The dependence of the methanation rate on the pressures of the reactant gases is shown in Figure 2. This plot was determined by varying the partial pressure of each reactant gas while maintaining a constant temperature and total pressure, using argon as a buffer gas. Consequently the observed rate law for methanation is given by
\[R_{\text{CH}_4} = K p^{-1} \text{CO}^n \text{H}_2 \]

The reaction begins to be poisoned after about 1-3 hours, depending on reaction conditions (higher temperatures and high CO/H\textsubscript{2} ratios lead to a faster rate of poisoning of the reaction). After poisoning of the reaction AES revealed a carbon covered surface.

The products of the hydrogenation of CO on rhodium foils are alkanes14 indicating that rhodium is a very good hydrogenation catalyst. The highest molecular weight hydrocarbon observed was propane, implying that the rate of carbon-carbon bond formation is slow relative to the rate of hydrogenation and desorption. As the reaction temperature was raised the product distribution was shifted towards more methane showing that the rate of hydrogenation increased faster than the rate of carbon-carbon bond formation.

Deuterium isotope effects arise from two sources5,10,15 first, the kinetic and second the thermodynamic or equilibrium isotope effects. The kinetic isotope effect is the result of the difference in zero point energy associated with the dissociating bonds containing the hydrogen isotope and can be approximated by the difference in zero point energies for the reactants, \(E_{\text{O}}(\text{D}) - E_{\text{O}}(\text{H}) \). The magnitude of \(E_{\text{O}}(\text{D}) - E_{\text{O}}(\text{H}) \) can be evaluated from vibrational frequencies and for the C-H and C-D bonds the difference is about 1.1 kcal/mol, from which the ratio of the rate constants, \(k_{\text{H}}/k_{\text{D}} \), is calculated to be as high as 3 at 300°C. However, a large kinetic isotope effect is rarely observed suggesting that some
zero point energy is associated with the activated complex, \(E^*_0(D) - E^*_0(H) \).

The thermodynamic isotope effect arises from a change in the surface concentration of a reaction intermediate. The equilibrium constant ratio, \(K_H/K_D \), is determined largely by the energy difference between the hydrogen containing products (methane and water) and the reactant (hydrogen)

\[
E_o(CH_4) - E_o(CD_4) + (E_o(H_2O) - E_o(D_2O)) - 3(E_o(H_2) - E_o(D_2)) = 5.4 \text{ kcal/mol.}
\]

At lower temperatures the value of \(K_D/K_H \) increases due to an exponential term in the partition function. Observed isotope effects result from a combination of the kinetic and thermodynamic effects.\(^ {15} \)

Since we have observed an equilibrium deuterium isotope effect, the rate determining step of the reaction involves hydrogen. From the size of the effect, similar to that observed on Ru\(^2 \), it has been suggested that one of the final hydrogenation steps is rate limiting.

Pressure dependence studies for the reaction gave a negative 1.0±1 order in CO and a positive 1.0±1 order in H\(_2\). These values are typical for methanation catalysts\(^ {16} \) and generally explained by invoking competitive adsorption of CO and H\(_2\) on the surface.

Conclusions

The pressure dependence studies on rhodium foils combined with the
magnitude of the equilibrium isotope effect and the activation energy lead us to conclude that one of the final hydrogenation steps leading to methane formation is indeed rate limiting.

Acknowledgements

This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

References

Figure Captions:

Figure 1. Arrhenius plot for the initial rate of formation of CH$_4$ and CD$_4$ versus inverse temperatures over Rh polycrystalline foils. As is shown, the rate of CD$_4$ formation is 1.5 times the rate of CH$_4$ formation over the entire temperature range of this study.

Figure 2. Rate of methane formation versus the partial pressure of each reactant at a constant total pressure of 10 atm and constant temperature of 300°C (constant H$_2$ pressure of 3 atm for determination of CO dependence and constant CO pressure of 3 atm for determination of H$_2$ dependence). The resulting rate expression has the form

$$ r_{CH_4} = k P^{0.0} P_{CO}^{1.0} P_{H_2}^{-1.0}. $$
Rhfoil METHANATION RATES

\[\text{CO:H}_2 = 2:1 \]
\[6 \text{ Atm} \]
\[\text{RATE} = A e^{-E_A/RT} \]
\[E_A = 25 \text{ kcal/mole} \]
\[A \sim 4 \times 10^6 \]

CH\textsubscript{4} TURNOVER FREQUENCY (molecules/site sec)

\[1/T \times 10^3 (\text{K}^{-1}) \]

Fig. 1
PRESSURE DEPENDENCE OF CO AND H₂ FOR METHANATION ON RHODIUM FOIL

\[R_{\text{CH}_4} = K P_{\text{CO}}^{P_{\text{CO}} - 1} P_{\text{H}_2}^{P_{\text{H}_2} + 1} \]

Fig. 2
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.