Title
Wireless Seismic Data Collection

Permalink
https://escholarship.org/uc/item/66f3q505

Authors
Paul Davis
Jeremy Elson
Deborah Estrin
et al.

Publication Date
2003
Wireless Seismic Data Collection

Paul Davis, Jeremy Elson, Deborah Estrin, Allen Husker, and Igor Stubailo

UCLA Earth and Space Sciences and CENS Systems Lab

Introduction: Seismology is limited by the need for wired infrastructure

- Discoveries are driven by data collection
 - Much of our knowledge of the Earth’s internal structure comes from measurement of earthquakes
 - Comparison of observations from many locations yields insight into details of the Earth’s structure in between

- Data collection currently requires infrastructure
 - Correlation across sensors usually requires **time synchronization**
 - GPS (Global Positioning System) Satellites provide precise time world-wide
 - Unfortunately, GPS is not visible from many seismically interesting areas: inside buildings or tunnels, under foliage, in canyons, underwater…
 - **Remote data retrieval** makes the system practical
 - Instant feedback after a significant event
 - Also allows health monitoring – faster turnaround on tuning, maintenance, etc.
 - Typically accomplished by connecting nodes to the Internet

Problem Description: Ease deployment by going wireless but maintain “good as wired” service

- Wireless, autonomous nodes
 - Use inexpensive, off-the-shelf hardware (e.g., 802.11b) to provide a wireless link to every node

- Multi-hop data and control routing
 - Allow collected data and outgoing control messages to be distributed hop-by-hop through the network to the nearest access point, rather than requiring Internet to every node

- High-precision multi-hop time sync
 - Nodes that have a view of GPS satellites propagate high-precision global time to nodes that need it

Proposed Solution: A prototype wireless seismic testbed using commodity hardware

- **Small, low-power Linux platform:**
 - The Intel/Crossbow X-Scale “Stargate”
 - 400 MIPS, 32 MB Flash and RAM, PCMCIA, Compact Flash

- **EmStar:** A Framework for Flexible Wireless Sensor Network Software
 - **Reference-Broadcast Synchronization:** Leverages Wireless Broadcasts for Precision
 - A central node can relate two broadcast domains to each other

 - **Automatic Construction of Trees for Multi-Hop, High-Precision Time Sync**