
Lawrence Berkeley National Laboratory
LBL Publications

Title
An algorithm to mesh interconnected surfaces via the Voronoi interface

Permalink
https://escholarship.org/uc/item/66j0j591

Journal
Engineering with Computers, 31(1)

ISSN
0177-0667

Author
Saye, RI

Publication Date
2015

DOI
10.1007/s00366-013-0335-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66j0j591
https://escholarship.org
http://www.cdlib.org/


ORIGINAL ARTICLE

An algorithm to mesh interconnected surfaces
via the Voronoi interface

R. I. Saye

Received: 28 February 2013 / Accepted: 4 September 2013 / Published online: 6 October 2013

� Springer-Verlag London 2013

Abstract Many scientific and engineering problems

involve interconnected surfaces meeting at junctions. For

example, understanding the dynamics of a soap bubble

foam can require modelling the fluid mechanics of liquid

inside an intricate network of thin-film membranes. If a

mesh of these surfaces is needed, the use of standard

meshing algorithms often leads to voids, overlapping ele-

ments, or other artefacts near the junctions. Here, we

present an algorithm to generate high-quality triangulated

meshes of a set of interconnected surfaces with high sur-

face accuracy. By capitalising on mathematical aspects of a

geometric construction known as the ‘‘Voronoi interface’’,

the algorithm first creates a topologically consistent mesh

automatically, without making heuristic or complex deci-

sions about surface topology. In particular, elements that

meet at a junction do so by sharing a common edge,

leading to simplifications in finite element calculations. In

the second stage of the algorithm, mesh quality is improved

by applying a short sequence of force-based smoothing,

projection, and edge-flipping steps. Efficiency is further

enhanced by using a locally adaptive time stepping scheme

that prevents inversion of mesh elements, and we also

comment on how the algorithm can be parallelised. Results

are shown using a variety of examples arising from mul-

tiphase curvature flow, geometrically defined objects, sur-

face reconstruction from volumetric point clouds, and a

simulation of the multiscale dynamics of a cluster of soap

bubbles. In this last example, generating high-quality

meshes of evolving interconnected surfaces is crucial in

determining thin-film liquid dynamics via finite element

methods.

Keywords Interconnected surfaces � Triangulated

mesh � Voronoi interface � Multiphase � Multi-

material data sets

1 Introduction

Many problems in science, engineering, and medicine

require meshing a network of interconnected surfaces

meeting at various types of junctions. Often these meshes

are needed as part of a numerical method to solve partial

differential equations (PDEs) defined on the network of

surfaces, such as in finite element methods. For example,

modelling the fluid dynamics of the liquid contained in the

thin-film membranes of a foam of soap bubbles requires

solving ‘‘thin-film equations’’ which, in turn, are coupled at

the junctions via flux boundary conditions [1]. To design

accurate numerical methods for solving such PDEs, it is

crucial that the generated mesh be of high quality, topo-

logically consistent, and free of artefacts at junctions, such

as voids and overlapping elements. Meshes of intercon-

nected surfaces may also be required for purposes of

visualisation, such as in examining the boundary between

different connecting tissues/organs in medical imaging.

Since the geometry and connectivity of the network of

surfaces are often complex, meshing algorithms must also

be able to reliably handle a wide variety of topological

configurations.

In this paper, we present a robust and efficient mesh-

generation algorithm for a network of interconnected sur-

faces. In the first stage of the algorithm, a topologically

consistent mesh is created that has no gaps, overlaps, or
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other artefacts at junctions. This step involves no ad hoc

decisions about surface topology; instead, properties of the

‘‘Voronoi interface’’ [2] are used to guarantee consistency.

The resulting mesh is suitable for many purposes, such as

visualisation, but consists of many low-quality elements, so

in the second stage of the algorithm a short sequence of

force-based smoothing, projection, and edge-flipping iter-

ations is applied. By using an adaptive time-stepping

strategy, convergence to a high-quality mesh can be

obtained within as few as 10–20 iterations, taking a frac-

tion of a second on a typical desktop computer for a mesh

with 10,000 elements.

There are many ways the set of surfaces could be

defined or represented. For example, they could be

explicitly parameterised using coordinate functions

ðs; tÞ7!Xðs; tÞ 2 R
3. In medical applications, CT imaging

and MRI produce voxel data wherein each voxel identifies

different regions or types of tissue, and the boundary

between the different regions defines the surfaces. In level

set methods [3], moving surfaces are defined implicitly as a

particular level set of an evolving scalar function. For the

purposes of our discussion, we define the ‘‘interface’’ to be

the boundary between the different regions (‘‘phases’’), i.e.

the entire network of interconnected surfaces. Clearly,

generating a mesh depends on how the interface is repre-

sented. In this work, our primary representation uses the

‘‘Voronoi interface’’ (see Sect. 3), which is a type of

generalisation of the Voronoi diagram. It is used in a

recently developed algorithm, the ‘‘Voronoi Implicit

Interface Method’’ [2, 4] that tracks the interface in an

evolving multiphase system. As we show below, using the

Voronoi interface makes it simple to generate a high-

quality mesh with elements that meet perfectly at junctions.

In particular, if two or more mesh elements meet at a

junction, then they will do so by sharing a common edge.

This additional property ensures that the mesh has a well-

defined topology, with the guarantee that mesh vertices on

junctions belong to all surfaces meeting at that junction.

This property leads to convenient simplifications in a finite

element method when handling coupled boundary condi-

tions at junctions. Since using the Voronoi interface makes

finding a topologically consistent mesh straightforward, it

may be advantageous to convert other representations

(such as voxel-based data or point clouds) into this form,

and we demonstrate this with an example in our results.

The outline of the paper is as follows. In the next sec-

tion, we review some of the previous work on meshing

multiple surfaces and compare with the approach presented

here. In Sect. 3, the Voronoi interface is defined, after-

which the main meshing algorithm is presented in Section

4. We then demonstrate the algorithm on various test

problems in Sect. 5, showing various analyses of mesh

quality and efficiency. Additional examples are also

shown, including one taken from a soap bubble foam

simulation in which solutions to surface PDEs computed

via finite element methods is a critical component of the

model.

2 Related work

Much of the previous work on meshing interconnected

surfaces has focused on multi-material data sets, wherein

each voxel is assigned a different label identifying different

regions or materials. A variety of algorithms have been

developed, which, somewhat broadly, are based on:

– Lookup tables: Here, a marching cubes [5] or marching

tetrahedra [6–8]-style algorithm is extended to handle

the case of multi-material data sets, leading to lookup

tables that take into account material labels. In general,

the lookup tables rapidly increase in size with the

material count, and produce a mesh that has many bad-

quality elements (e.g. slivers). In some cases, see e.g.

[9–11], they are created through a series of heuristic

decisions that decide a plausible topology, making it

unclear if the resulting meshes are guaranteed to be free

of artefacts. In another approach, in [12] a subdivision

algorithm is used together with trilinear interpolation

that leads to a mesh guaranteed to be topologically

consistent; however the subdivision comes at the price

of generating very large lookup tables or a large

number of tiny mesh elements. In [13], a lookup table is

used in the case of three materials, and in the general

case, triangle removal algorithms are used, allowing

meshes with boundaries and holes to be created.

– Delaunay refinement: These methods are an extension

of typical Delaunay refinement-based algorithms to the

case of multiple surfaces [14–16]. A mesh is iteratively

created by adding vertices and updating mesh topology

until a quality criteria is reached that terminates the

algorithm. They generally involve many subtle pre-

processing steps, including the need to identify and

extract the triple junctions as a network of curves. The

created meshes are topologically consistent, having no

gaps or overlaps, and in addition, mesh elements that

meet at junctions do so by sharing a common edge.

Parallel implementations of these algorithms can be

difficult; however, the approach has the advantage of

allowing quality criteria to be defined on per-surface

basis, allowing different materials to have different

mesh resolutions, and volume tetrahedra meshes (con-

sistent with the interface topology) are often produced

at no extra cost.
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– Particles: A different approach involves first placing

particles (or spheres) on the set of surfaces, optimising

the distribution of the particles, and then creating mesh

topology through a constrained Delaunay triangulation/

tetrahedrisation. A very early method using this idea

was the bubble mesh [17]: spheres of an adaptive size

are ‘‘packed’’ onto explicitly parameterised curves,

surfaces, and volumes, in that order. In a relaxation

step, the spheres are then dynamically moved according

to force-based laws to optimise their distribution,

before invoking a constrained Delaunay algorithm to

obtain the mesh topology. More recently, in [18] an

algorithm is proposed in which the particles, once

seeded on the implicitly defined surfaces, are dynam-

ically moved to optimise an energy functional that

measures surface features, allowing particles to con-

centrate near regions of high curvature. The resulting

meshes are of very high quality, but this comes at the

price of a computationally expensive optimisation

process; some of the meshes presented in the latter

work took several hours to generate.

– Volumetric meshing with guaranteed quality: Another

possibility is to mesh the volumes of the individual

regions/phases as a tetrahedral mesh, and then extract

surface meshes from the boundaries of the volumetric

meshes. In the lattice cleaving algorithm [19] (which

shares aspects with the single-region isosurface stuffing

algorithm of Labelle and Shewchuk [20]), a body-

centred cubic lattice is ‘‘cleaved’’, or cut, based on the

approximate location of the material boundaries. In

particular, vertices at the location of the cuts are

‘‘warped’’ by a procedure that guarantees mesh quality,

such that minimum dihedral angles are bounded from

below. In this method, some cases of interface topology

are simplified, as only materials on the vertices of

tetrahedra are used to decide topology, which can miss

cases in which multiple materials interact within a

tetrahedron. In another approach, Chernikov et al. [21]

developed an algorithm in which the input is an image

of labelled voxels, and an octree is used to output a

tetrahedral volumetric mesh with bounded dihedral

angles. A subdivision procedure is used near the

boundary that guarantees mesh quality. However, the

refinement usually produces too many elements near

the boundary, and so the mesh is subsequently

decimated by merging vertices while maintaining

quality bounds. In addition, the created mesh does not

perfectly match material boundaries, an attribute of the

algorithm defended by the property that labelled voxel

images do not necessarily correspond to smooth

surfaces.

– Other approaches: In [22], a straightforward division

strategy is used that subdivides the unit cube into

sufficiently many smaller sub-cubes, and assigns

different materials to each sub-cube. An interface

between different materials is then extracted directly

from the subdivided cubes, creating a topologically

consistent mesh that has a staircase shape which then

needs to be smoothed, affecting the accuracy of the

surface representation. More recently, in [23] an octree-

based approach that uses a dual contouring method is

presented, also based on a subdivision algorithm that

instead uses trilinear interpolation to resolve topolog-

ical ambiguities. Another octree-based algorithm is

developed in [24], allowing both triangular and quad-

rilateral surfaces meshes (as well as hexahedral volume

meshes) to be created of good quality. Using instead a

subdivision of a body-centred cubic lattice, in [25] a

global optimisation approach is developed in which the

mesh boundary is iteratively deformed to balance

surface accuracy with smoothness and mesh quality,

using an edge detection algorithm on labelled voxel

data. A different approach is presented in [26], wherein

surfaces are meshed away from the junctions, leaving

behind void regions which are then meshed using the

previously created surface meshes as constraints.

– Finally, when the surfaces are represented via other

means, different approaches are available. For example,

in [27], point clouds of surfaces are transformed into

implicit functions via partitions of unity, before execut-

ing a marching tetrahedra variant to extract a mesh.

Lastly, in the volume-of-fluid method for tracking

interfaces in multiphase fluid flow, the volume fraction

of every fluid in each grid cell is tracked, and to evolve

the fluids, the interface must be reconstructed from the

volume fractions, see e.g. [28].

In comparison, for the mesh-generation algorithm pre-

sented here, an initial mesh is constructed using a simple

marching tetrahedra-style algorithm that does not require

special material-dependent lookup tables. Instead, the

Voronoi interface, together with properties of piecewise

linear interpolation, guarantees topological consistency of

the mesh. In this fashion, heuristic or complex decisions

about surface topology are avoided. In the second stage of

the algorithm, vertices of the mesh are dynamically moved

to improve mesh quality, in part based on the ideas pre-

sented in the DistMesh algorithm [29]. Here, a specially

designed ‘‘clamping’’ function is used to automatically

prevent triangle inversion, while allowing low-quality

elements to quickly change shape into good-quality ele-

ments. The result is a robust and efficient algorithm which

can be used in a wide variety of situations.
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3 The Voronoi interface

Although the concept of the Voronoi interface can be

applied to quite general situations, we shall first motivate it

as a type of generalisation of the Voronoi diagram. Given a

set of m nodes in R
n; the Voronoi diagram decomposes Rn

into m different cells, such that all the points in a given cell

are closer to one particular node than any other. The

boundary between these cells is the set of points that are

equidistant to at least two nodes, and no closer to any other

node. Note that we can obtain a similar method of

decomposition if the nodes are replaced by any set of non-

overlapping regions Xi. In this case, the cells (i.e. ‘‘pha-

ses’’) consist of all points that are closer to one particular

region than any other; see Fig. 1 for a two-dimensional

illustration. As in [2], we define the Voronoi interface to be

the boundary between these cells/phases, and denote it as

CV .

Suppose we can calculate (or approximate) the signed

distance function, /i, to the boundary of each region Xi, i.e.

/iðxÞ ¼ � min
y2oXi

kx� yk;

with the sign chosen such that /i is positive inside Xi and

negative outside. Using these signed distance functions, the

Voronoi interface CV inside a given domain X is given by

CV ¼
n

x2X :9i 6¼ jsuch that/iðxÞ¼/jðxÞ�max
k 6¼i;j

/kðxÞ
o
:

ð1Þ

In particular, CV can be separated into a union of

individual surfaces separating pairs of different regions,

such that CV ¼
S

i 6¼j Cij, where

Cij ¼
n

x 2 X : /iðxÞ ¼ /jðxÞ� max
k 6¼i;j

/kðxÞ
o
: ð2Þ

Although distances were used as motivation, note that

(1) and (2) can be used to define an interface, even when

the /i functions are not necessarily signed distance

functions. All that is required is that the functions /i are

continuous, and that the individual sets Cij are

codimension-one surfaces.1 Therefore, it is useful to

make a generalisation: for any set of functions

/i : Rn ! R, the Voronoi interface of the functions /i is

defined to be CV given by (1).

Defining the interface in this manner, i.e. implicitly

rather than explicitly, provides many virtues. For example,

in an evolving multiphase system, implicit representations

of the interface automatically handle topological changes

in the interfaces (such as creation and disappearance of

phases, or changes in connectivity) [2, 4]. In relation to the

meshing problem, as shown below, this particular implicit

representation makes it straightforward to extract a topo-

logically consistent mesh with no artefacts at junctions.

Assuming continuity of the functions /i, an equivalent

characterisation of the interface is that a point x is inside

phase/material i if and only if /iðxÞ[ maxj6¼i /jðxÞ. This

characterisation was used in some previous works on

meshing multiple surfaces (wherein the functions were

smoothed characteristic/indicator functions); here, (1) is

used directly.

In practice, there are many possible methods for defin-

ing the functions /i, such as using closed-form mathe-

matical expressions and/or defining function values on a

background grid. In the case that the functions are signed

distance functions of implicitly defined geometries, their

values can be computed efficiently using a variety of

methods, such as the Fast Marching Method [30, 31] (see

also the method by Tsitsiklis [32]). In other cases, the

functions could be derived from a single label/indicator

function v : X! N that divides the domain into different

regions. For example, one could define /i as a (possibly

smoothed) per-phase indicator function such that /i(x) = 1

inside region i and /i(x) = 0 outside. The framework is

flexible, and the particular method of determining /i

depends heavily on the application. In the following, all

that is assumed is that the /i functions are defined on a

background grid (such as a regular Cartesian grid). How-

ever, it is important to note that it is not necessary to define

every /i function everywhere in the entire domain: in the

meshing algorithm, it is only necessary to know the values

of /i in a small narrow band surrounding the boundary of

phase i. This can dramatically improve efficiency and is a

common technique used, for example, in narrow band level

set methods [33].

Fig. 1 (Left) Voronoi diagram of three points in the plane. (Right)

The Voronoi interface CV ¼ C12 [ C13 [ C23 corresponding to three

given regions X1;X2, and X3. Here, R2 is divided into three cells (i.e.

phases) separated by CV

1 For simplicity, in the following, interfaces are assumed to contain

no holes. However, holes could be made by creating additional phases

in the multiphase system whose purposes are to implement void

regions, by using additional /i functions. In a simple implementation,

the meshing algorithm may then proceed unaltered and any surface

meshes of the void phases may be ignored or discarded upon

completion. Alternatively, to improve efficiency, one could make

minor modifications to the algorithm such that surface elements of

void phases are never created.
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4 Mesh generation

Given N functions /i defined on some three-dimensional

grid, the goal is to extract an explicit representation of the

Voronoi interface, defined by (1), as a high-quality trian-

gulated mesh. This is accomplished by first creating an

initial mesh, which although will generally be of low

quality, will nevertheless be topologically consistent in the

sense that triangles meet at junctions without overlap or

gaps. In the second stage of the algorithm, the mesh is

iteratively improved using a sequence of force-based

smoothing, projection, and edge-flipping steps. The method

is summarised in Algorithm 1, and, in the next set of

sections, the implementation of the individual steps is

described.

4.1 Creating the initial mesh

The procedure to create an initial mesh of the network of

interfaces is based on the approach first presented in [4]. In

this method, the Voronoi interface of the multiphase sys-

tem is extracted using a marching tetrahedra-style algo-

rithm that involves creation and ‘‘chopping’’ of mesh

elements. Given the functions /i, defined on a background

grid (such as a regular Cartesian grid), to extract a trian-

gular mesh representation of Cij as given by (2), the

mathematical procedure consists of three steps:

(i) First, establish a continuous piecewise linear interpo-

lation of every /i function, to determine /i at arbitrary

points. For example, if the background grid is a

regular Cartesian grid, then each cell can be divided

into six tetrahedra, as shown in Fig. 2 (left), and in

each tetrahedron we can use the obvious linear

interpolant of /i. This is precisely the interpolant that

is implicitly used by the marching tetrahedra algo-

rithm. Alternatively, if the background grid is already

a tetrahedral mesh, we can directly use the canonical

linear interpolant of /i.

(ii) Next, extract the zero level set of /i - /j as a

collection of planar polygon surface elements

{E‘}i=1
n .2 Since the last condition in (2) is not

necessarily satisfied on every surface element, it

follows that Cij �
S
‘ E‘.

(iii) For each element E‘, keep the set of points x 2 E‘
that satisfy /i(x) = /j(x) C /k(x) for all

k = i, j. This is achieved by a series of ‘‘chop’’

operations that takes E‘, chops it using the zero level

set of /i - /k as the position of the cut, and keeps

the piece on which /i C /k. The piece on which

/i \ /k is thrown away. Such chopping is made

possible by the fact that every level set function /i is

piecewise linear; hence particular level sets as well

as intersections of level sets are always linear. In

particular, it can be shown that throughout the

chopping process, the element is always a convex

planar polygon. After chopping is complete, the

polygon E‘ is then converted into a collection of

triangles.

The result of the above procedure is a collection of

triangles whose union is Cij. Note that the algorithm is

exact, in the sense that the Voronoi interface of the inter-

polated multiphase system is extracted exactly. Thus, the

topology of the mesh interface coincides precisely with the

topology of the Voronoi interface induced by the piecewise

linear interpolation of the /i functions—no ad hoc deci-

sions about mesh topology are made. It follows that dif-

ferent interfaces Cij and Ckl which meet at higher order

junctions do so without any overlap or gaps. In addition,

triangles that meet at junctions do so by sharing edges and

vertices along those junctions. Note also that an arbitrary

number of phases/materials can interact within a particular

tetrahedron: the Voronoi interface consistently defines the

interface throughout the interior of each tetrahedron, and

this resolves some of the ambiguity problems in surface

topology found in other works.

In the work presented here, the functions /i are defined

on a regular Cartesian grid. If each grid cell is divided into

six tetrahedra, see Fig. 2 (left), as per a common variant of

2 Note that /i - /j is a continuous piecewise linear function defined

on X, and so its zero level set must necessarily be piecewise planar. In

particular, because /i - /j is linear on each tetrahedron, it follows

that its zero level set in each tetrahedron, if it exists, is either a

triangle or a planar quadrilateral.

Fig. 2 (Left) Dividing a cube into six tetrahedra. (Right) A body-

centred cubic lattice tessellates space into identical tetrahedra; each

tetrahedra has two vertices at the centroid of neighbouring cells, and

the other two vertices on an edge of a cell. In the figure, the blue

tetrahedron ABCD is one of four sharing a face; the other three are

ABCF, ABDE and ABEF
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the marching tetrahedra algorithm, it is almost always the

case that the resulting triangulation is extremely poor:

many triangles are almost degenerate (small in diameter or

slivers) and there is often many more triangles than nec-

essary to capture the features of the interface, as demon-

strated in Fig. 3 (top). To improve this, two complementary

ideas are used:

– Instead of dividing each grid cell into six tetrahedra, we

have used a ‘‘body-centred cubic (BCC)’’ lattice, as

shown in Fig. 2 (right). In particular, we have used a

BCC lattice which requires no interpolation by skipping

every second grid point of the background reference

Cartesian grid: in Fig. 2 (right), grid points precisely

halfway between C and D, D and E, E and F, F and C, etc.,

which exist on the background Cartesian grid, are not

members of the tessellation. The BCC lattice has been

widely used in the literature (see for instance [8, 19, 20,

25]) as the tetrahedra have identical shapes and sizes, are

more evenly distributed, and lead to fewer grid-depen-

dent effects, as compared to the 6-tetrahedron split in the

standard marching tetrahedra algorithm. These effects,

as well as other possible subdivisions of Cartesian grids

into tetrahedra, are extensively analysed in [34].

– In addition, we have used a vertex snapping procedure

which eliminates sliver triangles. For a single scalar

function / defined on the background grid’s vertices,

assuming the zero level set is sought, vertex snapping

slightly perturbs / by setting the value of / to be zero

at any vertices where it is approximately zero:

~/ðxÞ ¼ 0 if j/ðxÞj\�;
/ðxÞ otherwise.

�

– This effectively snaps mesh vertices that are

approximately near the background grid points to be

precisely on those grid points, without introducing any

holes or artefacts in the mesh. In practice, even for

considerable reduction of sliver elements, the threshold �

can be very small. In our case, the mesh created by this

algorithm is used as the input to an iterative procedure that

projects vertices on surfaces and junctions to their

constraint manifolds, as explained in the next section.

Thus, the initial mesh does not need to be entirely accurate

and as a result large tolerances can be used, leading to a

significant reduction of unnecessary triangles in the mesh,

while maintaining the same feature resolution. When the

scalar functions are approximate distance functions, it was

found that setting � � 0:2h, where h is the Cartesian grid

cell size, gave good results. For the multiphase system,

vertices can be snapped by perturbing the level set

function values in a pairwise fashion:

Snapping in a pairwise fashion like this ensures that

previous alterations do not get overridden by later

alterations, which in turn means the topology of the

multiphase interface is not affected (provided it was

already sufficiently resolved).

Combining these ideas, we are led to Algorithm 2 for

creating an approximation of the Voronoi interface. On

line 3, it is only necessary to loop over the pairs of

phases defined in the particular tetrahedron being con-

sidered. On lines 4 and 5, a lookup table, similar to those

used in a standard marching tetrahedra algorithm, can be

used to determine how to extract the polygon (as either a

triangle or quadrilateral). On line 7, a simple method to

evaluate w at arbitrary locations is to use pre-computed

Lagrange basis functions, while on line 8, it is a simple

exercise to design an algorithm to cut a convex planar

polygon by the zero level set of a linear function defined

on its vertices. Polygons are then dissected into triangles

and added to the overall collection of triangles. These

steps are straightforward if one is not concerned about

duplicating vertices, i.e. triangles are represented as

3-tuples of vectors in R
3. Clearly, this is not optimal,

since representing a triangle with a 3-tuple of vertex

indices is more efficient. So, on line 11, the collection of

vertices are uniquified, by identifying vertices as equal if

they are within a small amount of machine precision

128 Engineering with Computers (2015) 31:123–139
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round off error.3 Alternatively, one may uniquify vertices

simultaneously with building the collection of triangles.

The result of the mesh creation algorithm on an example

multiphase system is shown in Fig. 3. Here, a five-phase

system is defined by setting {/i}i=1
4 to be signed distance

functions for four differently positioned spheres, i.e.

/iðxÞ ¼ ri � kx� xik, and then defining

/5 ¼ minð�/1;�/2;�/3;�/4Þ

to be the exterior phase. This system has a total of five phases,

ten individual surfaces Cij separating pairs of phases, ten

distinct triple line junctions, and five quadruple point junc-

tions. (Only some of these surfaces/junctions are visible in the

figures; see also Fig. 6 for a partial cutaway view.) Figure 3

(top) shows the mesh obtained by using the standard decom-

position of each Cartesian grid cell into six tetrahedra, without

vertex snapping. In comparison, Fig. 3 (bottom) shows the

result using the body-centred cubic lattice, with vertex snap-

ping. We can see that there is a significant reduction in sliver

triangles, as well as the overall triangle count.

4.2 Smoothing and projection

Once an initial mesh of the Voronoi interface of the multi-

phase system is created, a high-quality mesh can be obtained

with mesh quality improvement techniques. These techniques

have been extensively studied and come in a variety of forms,

involving a combination of vertex movements, updates in

mesh topology via edge flipping, and refinement techniques.

For example, in [35], volumetric tetrahedral meshes of multi-

material domains are improved by classifying mesh vertices

as fixed, on triple lines, on surfaces, or in the interior, and

different strategies are applied to each, ranging from average

mean curvature flow to gradient descent on an energy func-

tional measuring quality factors. These techniques can be

made efficient, at the price of a more involved implementa-

tion, by employing a backward Euler strategy and using

implicit techniques [36]. In this work, motivated by simplicity

of implementation, we adopt an explicit strategy that uses

force-based smoothing, projection of vertices onto their

constraining surfaces, and edge flipping, made efficient with a

locally adaptive time-stepping procedure. In particular, the

ideas underlying the DistMesh algorithm [29] are extended

and adapted to the case of interconnected surfaces. Vertices of

the mesh are moved according to ‘‘forces’’ exerted on them by

the edges in the mesh; in the original DistMesh algorithm, the

edges are analogous to springs that resist compression when

shorter than a certain rest-length, but do not otherwise resist

expansion. It was observed [29, 37] that this repulsive force

combines exceptionally well with edge flipping (or regular

Delaunay triangulation) to quickly generate meshes with very

good connectivity properties.

Since this process predominantly involves calculations

involving vertices and their edges, it is advantageous to use

a vertex-and-edges data structure. Hence, let xi 2 R
3,

i ¼ 1; . . .; n, denote the mesh vertices and Ei � N denote

the set of neighbours of vertex i, so that (xi, xj) is an edge

for each j 2 Ei. From the creation of the initial mesh, we

also know which surfaces each vertex is situated on. For

each vertex xi, let vi � N denote the set of phases for

Fig. 3 A multiphase mesh of a five-phase system of four spheres,

using the polygon chopping method (Algorithm 2). Four pairwise

surfaces and three quadruple point junctions are visible. (Top) Using

the standard decomposition of dividing a grid cell into six tetrahedra,

without vertex snapping. (Bottom) Using the body-centred cubic

lattice, with vertex snapping

3 With mild assumptions on the functions /i, it is possible to show

that the vertex snapping procedure guarantees that if two vertices on a

surface are within a distance � from each other, such that �	 h

(where h is the tetrahedron length), then they are in fact the same

vertex. In this work, a tolerance of � ¼ 10�14 was used (correspond-

ing to double precision and unit-length domains). Extensive tests

analysing separation distance of vertices found that this tolerance

correctly uniquified vertices in all cases.
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which xi is on the boundary. Thus, if vi has two, three, or

four elements, then xi is on a surface, a triple junction, or a

quadruple point, respectively. At times, it is also necessary

to determine the set of triangles connected to a particular

vertex; denote this set as Ti. Determining Ti can be done

on-the-fly by manipulating the edge data structure.

In the force-based smoothing strategy, each edge

(i, j) exerts a force fij = - fji on vertex i. The goal is to

find an equilibrium such that at each vertex, the net force is

zero. Solving such a nonlinear system is a relatively dif-

ficult task, so instead the vertices are moved iteratively,

using a simple forward Euler analogy:

xnþ1
i ¼ xn

i þ Dt
X
j2Ei

fij:

Here, Dt is an artificial time step that controls the progress of

the mesh towards the final desired state. Note, however, that if

Dt is too large, mesh elements can invert and this can cause the

iterative process to become wildly unstable. On the other hand,

ifDt is too small, then efficiency can be sacrificed since too little

progress may be made. A solution to this problem is presented

later, using a method that essentially locally computes the time

step according to a basic stability condition that prevents

inversion of triangles, and leads to rapid convergence.

4.2.1 Force functions

In [29], the force function represented edges as springs that

resist compression when shorter than a certain rest-length,

and do not resist expansion when longer. Despite being a

simple approach, it was shown that such a force quickly

leads to a mesh with uniformly high-quality elements. For

an edge (x, y), the force exerted on x is defined by

fDðx; y; ‘0Þ ¼
x� y

jx� yjmaxð‘0 � jx� yj; 0Þ;

where ‘0 is a rest-length that is related to the desired average

edge length of the final mesh. In fact, it is possible to allow ‘0

to vary spatially, allowing the mesh to automatically refine

where necessary. However, in this work, a mesh which has

uniform triangle sizes throughout is sought, and so ‘0 will be

spatially uniform. As noted in [29], it is important for vertices

of the mesh to spread out across the whole geometry, which

means that the rest-length ‘0 should be slightly larger than the

actual desired edge length in the mesh. This is achieved with

a simple scaling: at the beginning of each iteration, the

average edge length (measured in a L2 norm) is computed

and scaled by a factor4 of 1.2 to define

‘0 :¼ 1:2

Pn
i¼1

P
j2Ei
kxi � xjk2

Pn
i¼1 jEij

 !1=2

: ð3Þ

This repulsive force ties in well with edge flipping and

quickly leads to high-quality elements. However, when

edge flipping is not possible, as is the case on triple

junctions, the repulsive force can lead to situations in

which vertices attempt to exit their constraining surfaces,

causing mesh elements to invert. Instead, it was observed

that Laplacian smoothing works very well on, and near,

junctions. In this case, an attractive force fL is used, where

fLðx; yÞ ¼
1

2
ðy� xÞ:

Correctly normalised by the number of edges, the

attractive force is equivalent to a half-step of Laplacian

smoothing, which acts to move vertices to the average

location of its neighbours. This force is used for all

junction vertices, as well as surface vertices that have at

least one neighbour on a junction.

4.2.2 Projection

A side effect of the force-based smoothing is that over

time, mesh vertices can deviate from the surfaces on which

they are meant to be constrained, i.e. the mesh vertices can

stray from the Voronoi interface. To fix this, one can

project the vertices back onto the surfaces on which they

belong, by moving them in a direction orthogonal to the

constraining surface. Such a scheme was used in [29, 37]

for vertices constrained to live on codimension-one sur-

faces, and a different scheme was used in [18] for triple

junctions. Note that this procedure also fixes the small

aberrations caused by the vertex snapping used in creating

the initial mesh.5 For a single function, a vertex x close to

the zero level set of / is (approximately) projected onto the

zero level set with the update

x x� /ðxÞr/ðxÞ
jr/ðxÞj2

:

The update can be viewed as moving x to its closest

point on the zero level set of the linear approximation of /
at x, given by /ðxþ dÞ � /ðxÞ þ d � r/ðxÞ: In the case of

a vertex belonging to a triple junction, or a higher order

constraint set, one would like to project x to the

corresponding multi-junction interface. To do this, the

method for a single level set function can be generalised to

multiple level set functions by considering pairwise

4 The scaling factor of 1.2 was determined empirically, and is the

same as that used in [29]. It forces mesh vertices to spread apart

across the whole surface and leads to a smoothing behaviour that

performs consistently well.

5 In the projection step, the original, unperturbed functions /i are

used, i.e. they have not been altered by the vertex snapping procedure

used in creating the initial mesh.
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combinations: for a vertex x belonging to the boundary of

phases v � f1. . .;Ng; define

pðx; vÞ ¼

� 1

jvj � 1

X
i2v

X
j2v; j [ i

�
/iðxÞ � /jðxÞ

��
r/iðxÞ � r/jðxÞ

�

jr/iðxÞ � r/jðxÞj
2

:

ð4Þ

In essence, the function accumulates the shifts arising from

projection onto individual surfaces Cij, such that one iter-

ation is given by x xþ pðx; vÞ: Note that (4) reduces to

the case of a single surface when |v| = 2, and also that

p(x,v) = 0 whenever x is already on the multi-junction

interface (i.e. /i(x) = /j(x) for all i; j 2 v). The normali-

sation factor in (4) is designed to give efficient conver-

gence without causing oscillations (i.e. by ensuring the

steps are not too large). Finally, we mention that special

treatment may be needed if any of the denominators in (4)

are close to zero; this never caused problems in any of our

tests, but may happen if the functions /i are very poorly

defined. In such cases, possible methods to fix this could

include reinitialising /i as signed distance functions for

each phase.

Note that the gradient of the functions /i (as well as the

function values themselves) must be somehow calculated

or approximated. If they are given by closed-form mathe-

matical expressions, then one could calculate the gradients

using these expressions. Alternatively, if the functions are

defined on a background Cartesian grid, then one could

use, for example, standard second-order finite differences

to calculate their gradients at grid points, followed by tri-

linear interpolation to evaluate the gradients and function

values anywhere within the domain. This latter method was

adopted in much of the work presented here.

4.2.3 Adaptive time stepping

The net result of the force-based smoothing and projection

leads to displacements of mesh vertices in the form

xi  xi þ di:

Here, di is a displacement vector that is the sum of the

forces, together with the projection. If this displacement is

too large, mesh elements can invert, causing the smoothing

process to become unstable. To solve this, a simple

clamping algorithm can be used, wherein di is made

sufficiently small in such a way that no triangle inverts.

The algorithm is designed to allow vertex xi to move ‘‘as

far as it can’’ in the direction di, so that a small edge or

triangle can quickly expand if the forces want it to. The

clamping is performed for each vertex independently of all

other vertices, and effectively establishes an easy-to-

implement time stepping that is locally adaptive.

Specifically, for a particular vertex i, each of the

triangles connected to i are used to clamp by the

necessary amount, to form the replacement

di  di 
min
�

1;min
t2Ti

1

2
clampðdi; xi; tÞ

�
: ð5Þ

Here, clamp is a function that returns the maximum amount

by which xi can be moved in the direction di without

inverting the triangle t, independently of how the other

vertices of the triangle move. The function is implemented

as follows. Consider Fig. 4, which shows a triangle having

vertices v0, v1, v2. The indicated lines are constructed by

connecting midpoints of the three edges. The lines divide

the plane into three disjoint regions that are separated by

the shaded region indicated in Fig. 4. If it can be guaran-

Fig. 4 Lines passing through the midpoints of a triangle (with

vertices v0, v1, v2) divide the plane into the shaded region (having

four separate components) and non-shaded region (having three

separate components), such that the line opposite vertex vi has normal

ni. In the clamping procedure, each of the vertices vi is allowed to

move anywhere inside its own particular component of the non-

shaded region
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teed that the vertices v0, v1, v2 move only in their respec-

tive regions, without crossing the shaded region, then the

triangle will not invert. In full three-dimensional space,

these constraint regions are convex, bounded by the planes

with the indicated normal vectors, which in turn are par-

allel to the plane of the triangle.

Consider then a particular vertex, v0, say, with a corre-

sponding desired displacement vector d. The minimum

s [ 0 (if it exists) is computed such that v0 ? sd is on the

boundary of its constraint region. For a particular plane

with normal n containing the point a, it follows that

ðxþ sd� aÞ � n ¼ 0, giving s ¼ ða� xÞ � n=d � n. By doing

this for each appropriate plane, this leads to Algorithm 3 to

compute the clamp function for a particular vertex v0 of a

specified triangle, with the specified displacement d.

Note that in (5), the clamping is reduced by a factor of

two, thereby preventing triangle inversion entirely. As a

result, triangles may become nearly degenerate only after

an accumulation of displacements over several iterations.

In this scenario, the clamping factor and local ‘‘time step’’

would reduce to zero and convergence would halt. How-

ever, this event never occurs in practice, precisely because

edge flipping changes the topology of the mesh so that any

nearly degenerate triangles are removed.

4.2.4 Combining smoothing and projection

Putting all of the above together, Algorithm 4 performs one

iteration of force-based smoothing and projection, with the

adaptive time stepping. On line 3, in the second item of the

case statement, only the neighbours which belong to the

same type of surface (via the conditional vi � vj) are

considered. This ensures that the force law involves only

edges belonging to the same type of surface (or triple

junction). On line 5, the force computed from the edges is

enforced to be tangential to the surface, by removing the

component of the vector orthogonal to the surface. (Here,

nvi
is a normal vector to the surface vi = {j, k}, i.e. is

proportional to r/j - r/k, and can be calculated with

finite differences.) Without this, it was observed that the

non-tangential components of the force can start to compete

with projection, causing oscillation. Hence, the force-based

smoothing is restricted to tangential forces.

4.3 Edge flipping

In the edge-flipping step, every pair of triangles sharing a

common edge is considered. If flipping the shared edge (see

Fig. 5) improves the quality (defined below) of the pair of

triangles, then this is done and the connectivity of the mesh

is updated, before visiting other edges. In the plane, and

with a quality measure that is based on the standard Dela-

unay in-circle condition, this iterative procedure is a well-

known method that converges to a Delaunay triangulation

[38]. A simple measurement of triangle quality that is

suitable for triangles in R
3 is to define

Fig. 5 Edge-flipping exchanges an edge shared by two triangles T1

and T2 (left) with the edge formed by opposing vertices, giving two

new triangles T3 and T4 (right)
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q ¼ qðv0; v1; v2Þ ¼ 4
ffiffiffi
3
p triangle area

sum of squared edge lengths

¼ 2
ffiffiffi
3
p kðv1 � v0Þ 
 ðv2 � v0Þk
kv1 � v0k2 þ kv2 � v1k2 þ kv0 � v2k2

;

where vi are the vertices of the triangle. Here, q is norma-

lised so that 0 B q B 1: an equilateral triangle has q = 1

and a degenerate triangle has q = 0. (There are also many

other types of measures of element quality, see the review

[39].) Even though the triangles generally lie on a curved

surface, the edge-flipping algorithm is essentially equiva-

lent to the logic used in the plane; the algorithm is sum-

marised in Algorithm 5. Note that on line 2 of Algorithm 5,

the potential flip is required to only involve triangles

belonging to the same surface. This ensures that edges on

mesh junctions do not change connectivity. In addition, line

7 checks to see if the triangle pair is already of good quality;

if they are, then any possible edge flipping is essentially

inconsequential, since any increases in quality would be

minor. This simple check leads to markedly better effi-

ciency in the algorithm.

4.4 Parallelisation

Combining the above steps, i.e. Algorithm 1, yields the

basic algorithm to generate a triangular mesh of the

Voronoi interface. In some applications, the Voronoi

interface is determined by the evolution of complex

physics on high resolution three-dimensional grids. For

example, in [1], the liquid and gas dynamics in a soap

bubble foam were modelled, requiring computation on

hundreds of processors. In particular, the computational

domain was divided into subdomains, which were then

assigned to individual processors in an MPI implementa-

tion. In such cases, the functions which define the Voronoi

interface are split across several subdomains, and it follows

that the mesh-generation algorithm must also be paralle-

lised to maintain some level of computational efficiency.

This can be done with a few modifications to the individual

steps of the algorithm, mainly in relation to synchronisation

of mesh connectivity information across processor bound-

aries, as follows.

In the first step, an initial mesh approximating the

Voronoi interface is found. This step is essentially

unchanged: each processor can create a set of triangles

from the functions defined on its subdomain. It is only

necessary to ensure elements are not duplicated across

boundaries shared between subdomains. In a synchronisa-

tion step, the processors then communicate and assign

unique identifiers to the mesh vertices found in the first

step.

At this stage, only mesh smoothing and edge flipping

remain, with many possible methods of parallelisation. In

this work, the implementation has been simplified by

keeping the same domain decomposition and processor

layout. In other words, each vertex of the mesh is

assigned ownership to a particular processor, according to

the same subdomain decomposition. With this simple

approach, the smoothing and edge flipping can be paral-

lelised by

1. re-assigning ownership of vertices whenever they

move across subdomain boundaries; and

2. maintaining a ‘‘ghost layer’’ of mesh connectivity

information, to allow each processor to perform edge-

based calculations. That is, each processor maintains a

data structure for the vertices it owns, plus any

neighbours of those vertices.

Together, these allow each processor to perform one

step of force-based smoothing and projection, after which a

synchronisation step is needed to update information near

the subdomain boundaries.
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The only subtle difficulty with this approach is the need

to edge flip across subdomain boundaries. This can be

achieved by using two ghost layers, i.e. each processor

knows the connectivity and position of each neighbouring

vertex of each neighbouring vertex of each vertex the

processor owns. Processors then mutually agree before the

edge-flipping step, as to exactly which processor performs

the edge flipping on triangles spanning a subdomain

boundary. By taking this in turn, one can ensure that every

pair of triangles in the overall mesh will be subject to edge

flipping.

Note however that this simple domain decomposition

approach may not necessarily scale with the number of

processors. It is entirely possible that the Voronoi interface

exists in some parts of the domain, and not in others, so that

some processors are assigned no mesh vertices, while other

processors are assigned many. It follows that the scaling of

this approach depends highly on the geometry of the

interface. Therefore, different parallelisation methods may

be necessary if scaling is crucial to performance; see, for

instance, the general framework developed in [40] for

designing scalable mesh improvement algorithms. We

remark that in the case of the soap bubble foam application

mentioned previously—in which tens of thousands of

meshes were generated in the course of one simulation,

with each mesh having hundreds of thousands to millions

of elements—this simple approach was found to scale very

well and was sufficient to make the computational cost of

mesh generation only a minute fraction of the overall

simulation cost.

5 Results

Consider the example shown in Fig. 3 of four intersecting

spheres. Using the same initial mesh [i.e. Fig. 3 (bottom)],

Fig. 6 shows successive iterations of smoothing and edge

flipping. We see that after just one or two steps, many of

the poorly shaped triangles have significantly improved in

quality. After ten steps, much of the mesh has been

‘‘cleaned up’’. At this point, the majority of changes in the

mesh after more smoothing steps is in edge connectivity

alone, rather than in improving element quality. Conver-

gence to an equilibrium is essentially attained after 50

iterations. These observations can be made more quanti-

tative by examining various measures of mesh quality and

geometry as a function of iteration count, as shown in

Fig. 7. Here, histograms as a function of iteration count are

shown, for triangle inradius, circumradius, edge length,

quality, angles, and vertex degree. The plots show that

poor-quality elements are quickly replaced, and that the

distribution of inradii, circumradii, edge lengths, and

Initial mesh After one step After two steps

Iteration 50After ten steps

Fig. 6 Using the same initial mesh as in Fig. 3 (bottom), the mesh is shown after 1, 2, 10, and 50 steps of smoothing and edge flipping. The

bottom-right two frames correspond to the same mesh, except in one the middle sphere has been cut away to reveal the interior mesh
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triangle quality converge favourably so that the vast

majority of elements have approximately the same geom-

etry. The exception is in the distribution of triangle angles,

which has higher variance. In addition, we see that after

20–30 iterations, the measures of mesh geometry have

approximately reached an equilibrium. Essentially identical

behaviour was seen in every other problem the mesh

generator was tested on.

In the next example, the Voronoi Implicit Interface

Method [2, 4] has been used to evolve seven randomly cre-

ated phases under the action of multiphase curvature flow

using periodic boundary conditions. Figure 8 shows the result

of the meshing algorithm applied to the multiphase system at

a particular instant in time. One can see that the meshing

algorithm is able to handle complicated geometry, especially

so in this case, due to the proximity of some junctions to other

junctions, as shown in the magnified portion.

This particular example of a multiphase interface is used

to demonstrate the efficiency of the algorithm. A paralle-

lised implementation of the algorithm was used, on a

mainstream desktop computer using eight cores (by

dividing the cube into 2 9 2 9 2 subdomains). Creating

the initial mesh (as described in Sect. 4.1) took 10ms of

time. Vertices of the initial mesh were then given unique

identifiers across all eight processors, and this synchroni-

sation step took 0.25s, although our implementation of this

step could be made faster. For the example shown in Fig. 8,

there were 16,592 triangles in total, and 50 iterations of

smoothing were used, taking about 1.5s in total. Thus, each

iteration took approximately 30 ms time, and it was

observed that the individual components contributed: 35%

for force-based smoothing and projection; 20% for edge

flipping; and 40% for synchronisation among processors. In

general, the cost of the mesh-generation algorithm has two

components: in the first stage of creating the initial mesh,

the cost is linear in the number of tetrahedra visited; in the

second stage, each smoothing iteration has a cost linear in

the number of mesh vertices.

We conclude this section by demonstrating three more

applications of the meshing algorithm.

Figure 9 shows a case that involves defining objects as

intersections or unions of others, in a fashion that capita-

lises on the implicit representation of an interface. A sphere

is divided into two halves, with the dividing surface defined

implicitly via the zero level set of

f ðx; y; zÞ ¼ cos x sin yþ cos y sin zþ cos z sin x: ð6Þ
The three functions are defined as

/0ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� r þ jf ðx; y; zÞj3;

/1ðx; y; zÞ ¼ f ðx; y; zÞ3;
/2ðx; y; zÞ ¼ �f ðx; y; zÞ3;

Fig. 7 Measures of mesh quality and geometry as a function of the

number of iterations, corresponding to the example shown in Fig. 6.

After a specific number of iterations, the corresponding vertical slice

in each graph is a histogram indicating the percentage of features with

the associated measurement: indicates less than 0.1%, indicates

0.1%, 1%, 10%, 20%, and indicates at least 50%

Engineering with Computers (2015) 31:123–139 135

123



where r = 3p/2 is the radius of the sphere in this example.

As shown in Fig. 9, the algorithm is able to smoothly

divide the sphere into two halves, correctly reproducing

sharp features.

In the next application, the Voronoi interface is used to

reconstruct surfaces from volumetric point cloud data, i.e. a

set of scattered points in 3D, such that the points are

labelled according to which region they occupy. Point

cloud data may arise in various applications, such as in

experiments that use tracer particles to study fluid flow

patterns, Lagrangian-based multiphase fluid flow simula-

tions, or imaging devices that probe the interior of an

object. In this particular example, a cloud of randomly

generated points has been created, as shown in Fig. 10

(left). Individual particles have been assigned to one of

four regions: red, green, blue, or grey. Let yi; i ¼ 1; . . .;m,

denote the position of the particles and let vi denote what

region they are in. For each region, define the function /i

which measures the minimum distance to the cloud of

region i, i.e.

/iðxÞ :¼ min
1� j�m; vj¼1

kx� xjk: ð7Þ

With this definition, it follows that the Voronoi interface

of the functions /red, /green, etc. separates one region from

another by a surface going through the middle of the space

between them. By computing /i on a background Cartesian

grid, the mesh-generation algorithm can be used to auto-

matically reconstruct these surfaces. For a background grid

of size 32 9 32 9 32, Figure 10 shows the reconstructed

surfaces, showing nontrivial geometry at the junctions.

This type of surface reconstruction from volumetric point

cloud data could be especially useful when there are a large

number of points since very efficient algorithms can be

used to evaluate the functions /i.

Finally, in Fig. 11, an example is taken from a multi-

scale model of the gas and liquid dynamics in a foam of

soap bubbles [1]. The model can be used to study the

collapse of a foam due to membrane rupture, and couples

the macroscopic effects of gas dynamics to the microscopic

effects of thin-film liquid drainage. In the model, the fluid

dynamics of the soapy solution inside the membranes is

determined by thin-film equations defined on the network

of curved surfaces. This leads to a system of fourth-order

nonlinear parabolic PDEs which are coupled at the junc-

tions through nonlinear flux boundary conditions, and in

[1], a finite element method was used to solve this system

numerically. Since the rearrangement of bubbles is often

complex, it becomes necessary to rely on a robust mesh-

Fig. 8 An instant in time of a multiphase system undergoing

curvature flow with volume conservation. The jagged boundary is

due only to the periodic boundary conditions

Fig. 9 Dividing a sphere into two parts, with the dividing surface given implicitly by the zero level set of (6). The left figure shows the sphere as

a whole, and the right two figures show the individual halves
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generation algorithm to automatically create the meshes

used in the finite element method. Moreover, it is imper-

ative that the meshes be of high quality to accurately solve

the underlying PDEs. The algorithm presented here was

successfully used in this application: in a typical bubble

simulation, tens of thousands of meshes are generated.

Figure 11 shows a specific example in which circular rip-

ples caused by capillary waves are seen near the top of the

cluster.

6 Conclusions

In this paper, a robust and efficient mesh-generation

algorithm for a network of interconnected surfaces has

been presented. The algorithm capitalises on the notion of

the Voronoi interface, which guarantees topological con-

sistency of the created mesh and avoids heuristic or com-

plex decisions about surface topology. An initial mesh of

the Voronoi interface is created, which is then iteratively

improved using mesh quality enhancement procedures.

While the general approach can be implemented using any

background tetrahedral tessellation, we have focused on an

implementation that uses a BCC lattice together with ver-

tex snapping—the BCC lattice creates an initial mesh with

more uniformly distributed triangles, while the vertex

snapping removes unnecessary sliver triangles. In the sec-

ond stage, many possibilities exist for improving mesh

quality—in this work, we have opted for forced-based

smoothing, together with projection and edge flipping. The

projection methods were designed to correctly maintain the

accuracy of the surface representation while performing

force-based smoothing. Combined with a clamping pro-

cedure, it was shown that small edges in the initial mesh

finish expanding in as few as two to ten iterations, after

which the remaining iterations are largely in improving

mesh quality globally, where vertices spread apart due to

the expansion factor in the rest edge length ‘0. It may be

possible to analyse convergence more rigorously to estab-

lish quality bounds, similar to [19, 20, 21], although such

analysis would be subtle, due to the intricate coupling of

edge flipping, vertex movement, and clamping. In an

extensive application of the meshing algorithm in [1], tens

of thousands of meshes were automatically generated and

Fig. 10 (Left) A cloud of scattered points in 3D. Points belong to one of four different regions: red, green, blue, and grey. (Right) The

reconstructed surface obtained from the Voronoi interface of the functions defined in (7) and the mesh-generation algorithm

Fig. 11 A mesh of a cluster of soap bubbles, taken from a simulation

of the multiscale dynamics of soap bubble foams [1]. The circular

ripples seen near the top are capillary waves caused by the bubbles

moving under the effects of surface tension. In this example, 20

iterations of force-based smoothing was used to generate the mesh,

consisting of approximately 75,000 elements
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successfully used in finite element methods involving

coupled boundary conditions at junctions. Possibilities for

future work include investigating different force functions

or clamping procedures, which could lead to very rapid

convergence, and implementing a type of density control,

allowing the mesh to be adaptively refined in some parts of

the domain [29].
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36. Desbrun M, Meyer M, Schröder P, Barr AH (1999) Implicit

fairing of irregular meshes using diffusion and curvature flow. In:

Proceedings of the 26th annual conference on computer graphics

and interactive techniques, SIGGRAPH ’99, pp. 317–324. ACM

Press/Addison-Wesley Publishing Co., New York, NY, USA.

doi:10.1145/311535.311576

37. Persson PO (2005) Mesh generation for implicit geometries.

Ph.D. thesis, Massachusetts Institute of Technology

38. Bern M, Plassmann P (1999) Mesh generation. In: Sack JR,

Urutia J (eds.) Handbook of Computational Geometry. Elsevier

Science, Amsterdam

39. Field DA (2000) Qualitative measures for initial meshes. Int J

Numer Methods Eng 47(4):887–906. doi:10.1002/(SICI)1097-

0207(20000210)47:4\887::AID-NME804[3.0.CO;2-H

40. Freitag LA, Jones MT, Plassmann PE (1999) The scalability of

mesh improvement algorithms. In: Heath MT, Ranade A, Schre-

iber RS (eds.) Algorithms for parallel processing, The IMA vol-

umes in mathematics and its applications, vol. 105, pp. 185–211.

Springer New York. doi:10.1007/978-1-4612-1516-5_9

Engineering with Computers (2015) 31:123–139 139

123

http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.1073/pnas.93.4.1591
http://dx.doi.org/10.1137/S106482750037617X
http://dx.doi.org/10.1137/S106482750037617X
http://dx.doi.org/10.1109/9.412624
http://dx.doi.org/10.1006/jcph.1995.1098
http://dx.doi.org/10.1006/jcph.1995.1098
http://dx.doi.org/10.1109/TVCG.2006.22
http://dx.doi.org/10.1007/978-3-642-24734-7_19
http://dx.doi.org/10.1145/311535.311576
http://dx.doi.org/10.1002/(SICI)1097-0207(20000210)47:4%3c887::AID-NME804%3e3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1097-0207(20000210)47:4%3c887::AID-NME804%3e3.0.CO;2-H
http://dx.doi.org/10.1007/978-1-4612-1516-5_9

	An algorithm to mesh interconnected surfaces via the Voronoi interface
	Abstract
	Introduction
	Related work
	The Voronoi interface
	Mesh generation
	Creating the initial mesh
	Smoothing and projection
	Force functions
	Projection
	Adaptive time stepping
	Combining smoothing and projection

	Edge flipping
	Parallelisation

	Results
	Conclusions
	Acknowledgments
	References




