Lawrence Berkeley National Laboratory
Recent Work

Title
MEASUREMENTS OF INTERACTION CROSS SECTIONS AND NUCLEAR RADII OF Li ISOTOPES

Permalink
https://escholarship.org/uc/item/674537dn

Author
Tanihata, I.

Publication Date
1985-07-01
Submitted to Physical Review Letters

MEASUREMENTS OF INTERACTION CROSS SECTIONS AND NUCLEAR RADIi OF Li ISOTOPES

July 1985

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MEASUREMENTS OF INTERACTION CROSS SECTIONS
AND NUCLEAR RADII OF Li ISOTOPES

I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, and N. Yoshikawa

Institute for Nuclear Study, University of Tokyo,
3-2-1 Midori-cho, Tanashi, Tokyo 188 Japan,

and

K. Sugimoto, O. Yamakawa, and T. Kobayashi

Nuclear Science Division, Lawrence Berkeley Laboratory,
University of California, Berkeley, CA 94720, USA

and

N. Takahashi

College of General Education, Osaka University
1-1 Machikaneyama, Toyonaka, Osaka 560 Japan
Abstract

Interaction cross sections (σ_I) for all known Li isotopes (6Li-^{11}Li) and 9Be on targets Be, C, and Al have been measured at 790 MeV/nucleon. Nuclear radii (R_I) of these isotopes have been deduced from the σ_I. The differences of radii among isobars (6He-6Li, 8He-8Li, and 9Li-9Be) have been found for the first time. A comparison of R_I with the rms radii obtained from electron-scattering is presented.

PACS Numbers: 21.10.Gv, 25.70.-z, 27.20.+n
Recently, exotic-isotope beams, produced through the projectile-fragmentation process in high-energy heavy-ion reactions, were successfully used to measure the interaction cross sections for all the known He isotopes (3He, 4He, 6He, and 8He)1. The nuclear radii of those isotopes were deduced from the measured cross sections. This novel technique of using exotic nuclear beams opened a new possibility of systematically studying properties of unstable nuclei. In the present experiment, we have measured the interaction cross sections for all the known Li isotopes (6Li, 7Li, 8Li, 9Li, and 11Li) and 9Be on target nuclei Be, C, and Al at 790 MeV/nucleon. Nuclear radii of these isotopes have been deduced from the interaction cross sections.

The secondary beams of 11Li and 9Be were produced through projectile fragmentations of the 800-MeV/nucleon 20Ne primary beam. The other Li isotopes were produced from a 11B primary. The primary beams were accelerated by the Bevalac at the Lawrence Berkeley Laboratory. The secondary isotopes were produced in a production target of Be and were separated by rigidity using the beam-line magnet system as described in previous papers1,2. The rigidity separated isotopes were identified before incidence on a reaction target using their velocity (time-of-flight(TOF)) and their charge (pulse height in scintillation counters). No contamination more than 10^{-3} was observed in any selected isotope beams.

The interaction cross section (σ_I), which is defined as the total cross section for the change of proton and/or neutron number in the incident nucleus, was measured using a large acceptance spectrometer which is the same one used for the measurement of He-isotopes1. The σ_I was determined from the attenuation of the incident beam by the reaction target as,

$$\sigma_I = \frac{1}{N_t} \log(\gamma_0/\gamma),$$

where N_t is the number of the target nuclei per unit area, γ is the attenuation factor of the incident beam for a target-in run, and γ_0 is the same factor for a target-out run.
The non-interacting nuclei could suffer small angle deflections due to multiple Coulomb scattering and nuclear elastic scattering in the reaction target. The angular acceptance of the present detection system downstream from the target was designed large enough to detect most of the non-interacting nuclei. A small amount of the non-interacting nuclei were, however, scattered out of the detectors. The number of undetected non-interacting nuclei was estimated from the comparison of the measured position distribution of the detected non-interacting nuclei in the target-in run with that of the target-out run. The scattering-out probability was found to be at most 3% of the non-interacting nuclei. This correction procedure for the scattering-out nuclei was further verified by measurements using targets of various thicknesses.

The measured cross sections are listed in Table I. The errors shown in the table include the counting statistics as well as the systematic errors. The largest systematic error, which is about 0.3% of σ_f, was due to uncertainty in estimating the scattering-out probability. All other systematic errors were estimated to be less than 0.2% of the σ_f.

The interaction nuclear radius R_I is defined as,

$$\sigma_I(p,t) = \pi [R_I(p) + R_I(t)]^2 ,$$

where $R_I(p)$ is the radius of the projectile and $R_I(t)$ is that of target. The separability of projectile and target radii is the assumption made in the equation, which can be examined by using σ_I of various projectile-target combinations. As an example, Fig. 1 shows the radius differences of the target nuclei, which were obtained from the present data as well as the data from Ref.1 using the relation,

$$R_I(t_i) - R_I(t_j) = \sqrt{\frac{\sigma_I(p,t_i)}{\pi}} - \sqrt{\frac{\sigma_I(p,t_j)}{\pi}} ,$$

plotted against the mass number of the projectile nucleus. Except for one case obtained from the 4He beam3, it is clearly seen that the values are independent of projectile variation. It is also clear that the projectile radii are independent of the target variation within the present...
experimental uncertainties. Thus the assumption of the separability of projectile and target radii is valid within ± 0.02 fm.

The R_1's of Li isotopes as well as those of He isotopes are plotted in Fig. 2, where values obtained from the Be, C, and Al targets were averaged and the interaction cross sections of He isotopes were taken from Ref. 1. The absolute scale of the radius is determined from a least squares fitting of 4He+4He, 9Be+9Be, 12C+12C, 4He+12C, and 9Be+12C interaction cross sections1,4,5. The radii of 9Be and 12C are also plotted.

The R_1 of Li-isotopes, except 11Li, already follow the $A^{1/3}$ dependence even though they have small mass-numbers. A much larger radius has been observed for 11Li than would be expected from $A^{1/3}$ dependence. It might be due to a large deformation in 11Li, due to the long tail in the matter distribution of the weakly-bound last nucleons, or simply due to the weak binding of the last nucleons.

For the first time we can directly compare the differences of radii between pairs of isobars, i.e. $R_1(^8\text{He})-R_1(^8\text{Li})=(0.10\pm 0.03)$ fm, $R_1(^8\text{He})-R_1(^8\text{Li})=(0.12\pm 0.03)$ fm, and $R_1(^9\text{Li})-R_1(^9\text{Be})=(-0.08\pm 0.04)$ fm. The larger radii of the neutron rich isotopes 8He and 8He, which have only two protons, suggest the existence of thick neutron skins.

Figure 3 shows the comparison, for stable isotopes, of the R_1 and the root-mean-square (rms) radii R_{rms} obtained by electron scattering6. The dependence of R_1 on the mass-number (A) and that of R_{rms} show a notable discrepancy: R_1 increases with A whereas R_{rms} stays almost constant for $A \geq 6$. This discrepancy is not due to the difference between the charge distribution and the nucleon distribution because $Z \approx N$ in these nuclei. The discrepancy is due to the definition of radius: the rms radius depends only on the relative shape of a density distribution, while R_1 depends strongly on the absolute value of the nucleon density at the nuclear surface. In the following we relate the interaction cross section data to a rms radius
through a Glauber type calculation and show that the A dependence of R_{rms}^G is reproduced.

To obtain the r_{rms} radius from the interaction cross section, semiclassical optical-model calculations were made using Karol's prescription\(^7\), in which the nuclear density distribution $\rho(r)$ was assumed to be a Gaussian of the form,

$$\rho(r) = \frac{A}{(a \sqrt{\pi})^3} e^{-\frac{(r/a)^2}{2}}. \quad (4)$$

The width parameter a can be related to the r_{rms} radius R_{rms}^G of the distribution by

$$R_{\text{rms}}^G = \sqrt{1.5} \ a \quad (5)$$

Calculations were made for the collisions of identical stable isotopes, i.e., $^4\text{He}+^4\text{He}$, $^6\text{Li}+^6\text{Li}$, $^7\text{Li}+^7\text{Li}$, $^9\text{Be}+^9\text{Be}$, and $^{12}\text{C}+^{12}\text{C}$. The width parameter a ($=a_p=a_n$) was taken as the fitting parameter in order to reproduce the value of σ_I. Here $\sigma_I(6\text{Li},6\text{Li})$ and $\sigma_I(7\text{Li},7\text{Li})$, which were not directly measured, were calculated from the $R_I(6\text{Li})$ and $R_I(7\text{Li})$ using Eq. (2). Those values are believed to be reliable within a few % due to the projectile-target separability discussed above.

The r_{rms} radii(R_{rms}^G) calculated by Eq.(5), using the fitted parameter a, are shown in Fig. 3 by triangles. Although the absolute values of R_{rms}^G are slightly smaller than R_{rms}^e, the A dependence is well reproduced. In the optical-model calculations the free nucleon-nucleon value was used for the average nucleon-nucleon cross section ($\bar{\sigma}$). This assumption, however, is not necessarily valid, and the effective value of $\bar{\sigma}$ may differ from its free nucleon-nucleon value due to nuclear-matter effects. A very good agreement of absolute values was obtained with $\bar{\sigma}$ which was 85 % of the free nucleon value. The present calculations show also that R_I is a radius where the nucleus has a matter density about 0.045 fm\(^{-3}\) for $A \geq 6$ nuclei.

It was reported that the mean free path of the 800-MeV protons inside the nuclear matter is longer than the value expected from the free nucleon-nucleon cross sections\(^8\). Also the smaller effective value of $\bar{\sigma}$ was reported in uranium reactions at 900 MeV/nucleon\(^9\). Our present
observation is qualitatively consistent with those data. The value of \(\bar{\sigma} \), however, has not been determined by the present analysis. Calculations based on a realistic matter distribution are necessary to determine the appropriate value of \(\bar{\sigma} \).

In summary, we have successfully used the secondary beams of unstable Li isotopes as well as stable isotopes of Li and Be for the measurement of the interaction cross sections \(\sigma_I \) of nucleus-nucleus collisions. The interaction nuclear radii \(R_I \) of all the known Li isotopes and \(^{9}\text{Be}\) have been determined from these \(\sigma_I \). It has been observed that the radius of \(^{11}\text{Li}\) is much larger than the value expected from the \(A^{1/3} \) dependence of other Li-isotope radii. The differences of the radii between isobars, \(^{6}\text{He}-^{6}\text{Li}\), \(^{8}\text{He}-^{8}\text{Li}\), \(^{9}\text{Li}-^{9}\text{Be}\) have been observed for the first time. The semiclassical optical model has been shown to give the \textit{rms} radius which is consistent with that obtained from the electron scattering. It has also been shown that the \(R_I \) gives a constant density \((\rho \sim 0.045 \text{ fm}^{-3})\) radius of a nucleus. It is thus demonstrated that the measurement of \(\sigma_I \) combined with the appropriate model calculation provides a new method to study the nuclear density distribution of stable isotopes and unstable isotopes which could not be accessed before.

We would like to thank Y. Matsuyama, T. Fujino, F. S. Bieser for their technical assistance. Dr. D. E. Greiner is gratefully acknowledged for contribution in an earlier stage of the experiment and for useful discussions. This work was supported by the Director, Division of Nuclear Physics of the Office of High-Energy and Nuclear Physics of the US Department of Energy under Contract DE-AC03-76SF00098, the INS-LBL Collaboration Program, and by the Japan-US Joint Program for High-Energy Physics. One of the author (I.T.) gratefully acknowledges the support of Yamada Science Foundation.
References

* also, Lawrence Berkeley Laboratory, University of California.

** Permanent address, Faculty of Science, Osaka University.

3. The anomaly in 4He was presented and discussed in Ref.1.
Table I. Interaction cross sections (σ_I)

σ_I in mb

<table>
<thead>
<tr>
<th>beam</th>
<th>target</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Be</td>
<td>C</td>
<td>Al</td>
</tr>
<tr>
<td>6Li</td>
<td>651± 8</td>
<td>688±13</td>
<td>1010±11</td>
</tr>
<tr>
<td>7Li</td>
<td>686± 4</td>
<td>736± 6</td>
<td>1071± 7</td>
</tr>
<tr>
<td>8Li</td>
<td>727± 6</td>
<td>768± 9</td>
<td>1147±18</td>
</tr>
<tr>
<td>9Li</td>
<td>739± 5</td>
<td>796± 6</td>
<td>1135± 8</td>
</tr>
<tr>
<td>11Li</td>
<td>1056±30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9Be</td>
<td>755± 6</td>
<td>806± 9</td>
<td>1174±11</td>
</tr>
</tbody>
</table>

The listed errors include statistical and systematic errors. The largest systematic errors were due to uncertainties in the estimation of scattering-out probabilities of non-interacting nuclei.
Figure Captions

Fig. 1 Radius differences of target nuclei are plotted against the projectile mass number A. It is seen that the radius differences are independent of the projectile variation.

Fig. 2 Interaction nuclear radii R_I are plotted for all the He and Li isotopes as well as for 9Be and 12C. Dotted lines in the figure show the $A^{1/3}$ dependence of the radii. Differences of radii between pairs of isobars are seen for the first time.

Fig. 3 The interaction radius (R_I) and the rms radius (R_{rms}^e), which is obtained by electron scattering, are plotted for 4He, 6Li, 7Li, 9Be, and 12C. Triangles in the figure show the rms radii (R_{rms}^G) of Gaussian matter distributions which reproduce the present R_I values. The R_{rms}^G shows good agreement with the R_{rms}^e.
\bullet = He
\square = Li
x = Be

Fig. 1
Fig. 2
Fig. 3

- \(^6\text{Li} \)
- \(^7\text{Li} \)
- \(^9\text{Be} \)
- \(^{12}\text{C} \)

Radius (fm)

\(R_I \)

\(R_{rms}^e \)

\(R_{rms}^G \)
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.