Title
A mathematical model for determining age-specific diabetes incidence and prevalence using body mass index

Permalink
https://escholarship.org/uc/item/67t004xf

Journal
Annals of Epidemiology, 23(5)

ISSN
1047-2797

Authors
Appuhamy, JADRN
Kebreab, E
France, J

Publication Date
2013-05-01

DOI
10.1016/j.annepidem.2013.03.011

Peer reviewed
A mathematical model for determining age-specific diabetes incidence and prevalence using body mass index

J.A.D. Ranga Niroshan Appuhamy PhD, E. Kebreab PhD, J. France DSC

Purpose: Few models have been developed specifically for the epidemiology of diabetes. Diabetes incidence is critical in predicting diabetes prevalence. However, reliable estimates of disease incidence rates are difficult to obtain. The aim of this study was to propose a mathematical framework for predicting diabetes prevalence using incidence rates estimated within the model using body mass index (BMI) data.

Methods: A generic mechanistic model was proposed considering birth, death, migration, aging, and diabetes incidence dynamics. Diabetes incidence rates were determined within the model using their relationships with BMI represented by the Hill equation. The Hill equation parameters were estimated by fitting the model to National Health and Nutrition Examination Survey (NHANES) 1999–2010 data and used to predict diabetes prevalence pertaining to each NHANES survey year. The prevalences were also predicted using incidence rates calculated from the NHANES data themselves. The model was used to estimate death rate parameters and to quantify sensitivities of prevalence to each population dynamic.

Results: The model using incidence rate estimates from the Hill equations successfully predicted diabetes prevalence of younger, middle-aged, and older adults (prediction error, 20.0%, 9.64%, and 7.58% respectively). Diabetes prevalence was positively associated with diabetes incidence in every age group, but the associations among younger adults were stronger. In contrast, diabetes prevalence was more sensitive to death rates in older adults than younger adults. Both diabetes incidence and prevalence were strongly sensitive to BMI at younger ages, but sensitivity gradually declined as age progressed. Younger and middle aged adults diagnosed with diabetes had at least a two-fold greater risk of death than their nondiabetic counterparts. Nondiabetic older adults were found to be under slightly higher death risk (0.079) than those diagnosed with diabetes (0.073).

Conclusions: The proposed model predicts diagnosed diabetes incidence and prevalence reasonably well using the link between BMI and diabetes development risk. Ethnic group and gender-specific model parameter estimates could further improve predictions. Model prediction accuracy and applicability need to be comprehensively evaluated with independent data sets.
challenging and requires larger survey samples than those required for prevalence estimates. Therefore, a mathematical representation calculating diabetes incidence rates within the model itself can provide a better option for an efficient and more accurate prediction of diabetes prevalence. Mathematical models also allow for estimating parameters and determining sensitivities. A model representing all major population mechanisms such as births, deaths, aging, migration, and diabetes incidence will help to assess relative sensitivities or strength of associations of each of these mechanisms to diabetes prevalence. Moreover, such a mathematical model also allows for estimating parameters of some critical mechanisms, for example, death rates. The death rates associated with diseases are often estimated based on the information reported on death certificates. However, the reliability of death certificate-oriented death rate estimates appears to be doubtful.

Obesity has been a major factor in the recent increase in diagnosed diabetes incidence in the United States. Therefore, body mass index (BMI) can potentially be a leading diabetes risk predictor. Huang et al. constructed a comprehensive Markov chain model for predicting diabetes incidence and prevalence across different BMI categories in the total U.S. population. However, Narayan et al. demonstrated that the link between BMI and diabetes development risk in adult age groups commonly defined in epidemiology, (2) assess sensitivities of diabetes prevalence to incidence, death and migration rates, and (3) estimate death rate constants and other parameters for diabetic and nondiabetic adults by fitting the model to National Health and Nutrition Examination Survey (NHANES) 1999–2010 data.

Materials and methods

Model development

The time unit for the model is a year (y). Total population size was arbitrarily set at 10,000, held constant, and divided into four age groups (x): (1) younger than 20, (2) 20 to 39, (3) 40 to 59, and (4) 60 years or older (Fig. 1). Individuals in each age group were allocated to two pools: Diabetic (Q_D(x)) and nondiabetic (Q_H(x)), which also includes undiagnosed cases. The diabetes incidence rate of each age group (F_D(x)) was taken to be a linear function of Q_H(x) with corresponding diabetes fractional incidence rate k_H(x)_D(x):

\[F_{H(x)} = k_{H(x)} Q_{H(x)} \]

Death rates of nondiabetic (F_D(x)_death) and the diabetic (F_D(x)_death) individuals in each age group were also taken as linear functions of Q_H(x) and Q_D(x), respectively, with corresponding fractional death rates k_H(x)_death and k_D(x)_death:

\[F_{H(x)}(death) = k_{H(x)}(death) Q_{H(x)} \]
\[F_{D(x)}(death) = k_{D(x)}(death) Q_{D(x)} \]

A fractional rate expresses an absolute rate or a flux (i.e., F_{H(x)}(death)) as a proportion of the pool of interest (i.e., Q_H(x)). Because units of the rates and pools are individuals per year and individuals respectively, the unit of the fractional rates is y^{-1}. For example, a fractional death rate of 0.01 y^{-1} means that 1% of the population dies annually.
Aging rates (F_{aging}; Fig. 1) by which non-diabetic and diagnosed diabetic individuals move to the next age group (from x to $x+1$) were also represented as linear functions of preceding age group pool size and relevant fractional rates, set at 0.05 y^{-1} (because the age groups were 20 years). Related to the U.S. population, net migration flows were assumed to be positive and represented as immigration flows ($F_{\text{D}x\text{report}}$ and $F_{\text{H}x\text{migr}}$ in Fig. 1). All births (F_{birth} in Fig. 1) were assumed to be non-diabetic. Rates of change in $Q_{H(x)}$ and $Q_{D(x)}$ were represented by ordinary dynamic differential equations. For example, rate of change of the non-diabetic younger than 20 pool was represented by the following equation which describes the balance between birth and migration inflows, and diabetes incidence, death, and aging outflows (Fig. 1):

$$\frac{dQ_{H(1)}}{dt} = (F_{\text{birth}} + F_{\text{H}(1)\text{migr}}) - (F_{\text{H}(1)\text{D}(1)} + F_{\text{H}(1)\text{death}} + F_{\text{H}(1)\text{aging}}).$$

Similarly, rate of change in the diabetic pool was calculated as a balance between incidence and migration inflows, and aging and death outflows (Fig. 1):

$$\frac{dQ_{D(1)}}{dt} = (F_{\text{H}(1)\text{D}(1)} + F_{\text{D}(1)\text{migr}}) - (F_{\text{D}(1)\text{death}} + F_{\text{D}(1)\text{aging}}).$$

$Q_{H(x)}$ and $Q_{D(x)}$ were then determined by numerical integration of the corresponding differential equations. Diabetes prevalence in each age group ($\text{PRV}(x)$) was finally calculated using the corresponding $Q_{H(x)}$ and $Q_{D(x)}$:

$$\text{PRV}(x) = \frac{Q_{D(x)}}{Q_{D(x)} + Q_{H(x)}}.$$

The $k_{H(x)\text{D}(x)}$ of adult age groups (≥ 20 years) were estimated using average BMI of the nondiabetic pools and the Hill equation from allosteric enzyme kinetics [10]. The Hill equation has three parameters (Y_{max}, K, and n) and gives a nonlinear (sigmoidal) relationship between two variables X (substrate concentration) and Y (reaction rate):

$$Y = \frac{Y_{\text{max}}}{1 + \left(\frac{X}{K}\right)^n}.$$

The fractional diabetes incidence rate in each healthy adult group ($Y = k_{H(x)\text{D}(x)}$) as a function of BMI ($X = \text{BMI}(x)$) was therefore represented by:

$$k_{H(x)\text{D}(x)} = \frac{k_{H(x)\text{D}(x)}^{\text{max}}}{1 + \left(\frac{\text{BMI}(x)}{B_M}\right)^n},$$

where $k_{H(x)\text{D}(x)}^{\text{max}}$ is the maximum fractional diabetic incidence rate, K is the affinity constant for BMI, B_M is the average BMI of nondiabetic individuals, and n is the sigmoidicity parameter or Hill coefficient.

Data and calculations

Diagnosed diabetes and BMI data were obtained from six separate NHANES surveys conducted during 1999 through 2010 [11]. The diabetes prevalence (observed prevalence) and incidence rates (observed $k_{H(x)\text{D}(x)}$) in each age group were calculated for each survey year (Table 1). Incidence rates were calculated using the ‘current age’ and ‘age when diabetes was first diagnosed’ data. The number of years each person had been diagnosed with diabetes was calculated by subtracting the latter from the former. The participants who had a value of zero were identified as having been newly diagnosed within the survey year. The observed $Q_{H(x)}$ and $Q_{D(x)}$ in each age group were then calculated pertaining to a 10,000 population and adjusted for U.S. population age structures in respective survey years [12]. Moreover, three BMI categories: (i) below 25, (ii) 25 to 29.9, and (iii) at least 30 kg/m², were formed within each adult age group. Such group formation was required as the model predicts diabetes prevalence of a group or a population using an average BMI. Diabetes prevalence and incidence rates, average BMI of nondiabetic individuals, and $Q_{H(x)}$ and $Q_{D(x)}$ were again calculated for each BMI category in each age group. Annual birth rates ($F_{\text{birth}} = 141 \pm 3.0$ per10,000, during 2000–2010), and the immigration rates of each age group (averages given in Table 1) were calculated from the U.S. Census Bureau statistics [13,14] considering the age structures of immigrants [15] and diabetes prevalence estimates of U.S. immigrants reported in Oza-Fran et al. [16].

Model simulation

The model was separately run to predict age-specific diabetes prevalence in each NHANES survey year using each year’s birth (F_{birth}) and migration rate ($F_{\text{D}x\text{report}}$ or $F_{\text{H}x\text{migr}}$) estimates. For these preliminary simulations, the Hill equation parameter values for each age group were assigned in a trial-and-error manner by plotting the NHANES incidence rate estimates of the BMI categories against the average BMI of the nondiabetic individuals. Fractional death rates were taken from Gu et al. [17]. In every simulation, total population size was assumed to be 10,000. All 10,000 individuals were assigned to $Q_{H(x)}$ initially (time = 0 years) and the rest of the pools set to ~0 (Fig. 2). The model was run to achieve steady state, and $Q_{H(x)}$ and $Q_{D(x)}$ were being calculated iteratively using the Runge-Kutta fourth-order method. The $Q_{H(x)}$ and $Q_{D(x)}$ at the steady state correspond respectively with nondiabetic and diabetic population sizes in each age group in the survey year of interest (1999–2000, 2001–2002, etc.). The steady-state $Q_{H(x)}$ and $Q_{D(x)}$ were then used to calculate diabetes prevalence (predicted prevalence) in each age group in each survey year. The $Q_{H(x)}$ and $Q_{D(x)}$...
Model fitting and parameter estimation

Hill equation parameters of adult age groups and fractional death rates of all the age groups were estimated by fitting the model simultaneously to observed $Q_{H(x)}$ and $Q_{D(x)}$ of each BMI category in each age group of each NHANES year. Time for these observed $Q_{H(x)}$ and $Q_{D(x)}$ was set to 300 years. The initial parameter values were calculated from data in Gu et al. [17] and using the plots of NHANES incidence rates versus average BMI. Model fitting was carried out using the Nelder-Mead search algorithm [18] while maximizing the log-likelihood function. The diabetes prevalence in each age group pertaining to each survey year was predicted using final parameter estimates of fractional death rates and $k_{H(x)},D(x)$ from the Hill equations. An additional round of prevalence predictions was carried out using the NHANES $k_{H(x)},D(x)$ estimates (averages in Table 1). These predicted values were used in internal model evaluations as described below.

Sensitivity analysis

A sensitivity analysis was conducted to quantify changes in diabetes prevalence (response variable) for unit increases in diabetes incidence; birth, death, and migration rate parameters; and BMI. Responsiveness of diabetes incidence (predicted by the Hill equations) to BMI was additionally assessed. The parameter values and BMI were set to age group averages and sensitivities were analyzed simultaneously. The changes in the response variables were calculated as partial derivatives and referred to as sensitivity coefficients. Sensitivity coefficients were normalized for both independent and response variables allowing comparison of sensitivities across age groups and across parameters.

Internal model evaluation

Prediction errors associated with diabetes prevalence in each age group were calculated as:

\[\text{Prediction error} = \text{observed prevalence} - \text{predicted prevalence}. \]

As mentioned, the observed prevalences were from the six NHANES surveys (n = 6) conducted from 1999 through 2010. Mean square prediction error statistics were calculated to determine model accuracy [19]. Square root of mean square prediction error (RMSPE) is directly comparable with the observed variable of interest (diabetes prevalence herein) so that RMSPE was calculated and expressed as a percentage of average observed diabetes prevalence to indicate uncertainty of prediction. Model development, simulations, optimizations, sensitivity analysis, and evaluation were carried out using acsIxTreme software (AEgis Technologies, Huntsville, AL).

Comparison of model predictions with literature data

The fractional diabetes incidence rates ($k_{H(x)},D(x)$, y^{-1}) predicted by the Hill equation are equivalent to the average annual probability that an individual in a particular adult age group develops diabetes. As per NHANES 1999–2010 data, average BMI of middle-aged adults increased by 4% compared with the average BMI of younger adults (27.9 vs. 28.9). When the adults became older (≥60 years) average BMI decreased and was similar to the value they had when young (Table 1). For an adult presently 20 years old, having a BMI of 28.0 kg/m2 and assumed to live for 80 years, our model predicts an average annual diabetes development probability of 0.0008 (0.08%) and consequently a total probability of 0.016 (0.0008 × 20) in the 20- to 40-year age group. Similarly, the model predicts total probabilities of 0.106 (0.0053 × 20, considering a 4% BMI increase) and 0.206 (0.0103 × 20) in the 40- to 60-year and 60- to 80-year age groups, respectively. Thus, the projected total lifetime diabetes development risk of an individual is 0.328 (32.8%).

The predictions from the model were compared with those reported in Narayan et al. [9], who used a comprehensive Markov scheme to predict lifetime diagnosed diabetes risk in different BMI categories among U.S. adults. Similarly, total diabetes incidence pertaining to middle-aged (average age, 45 years) Caucasian, Asian, Hispanic, and Black women (baseline average BMI of 24.3, 22.7, 24.3, and 26.0, respectively) during the next 20 years were predicted using the model, and compared with observed incidence values from a long-term (1980–2000) female cohort in the United States [20]. Further, the incidence rates predicted for normal weight, overweight, and obese middle-aged men (average age, 50 years) were compared with the observed rates from a long-term (20 years) Swedish cohort study reported by Arnlov et al. [21].

Results

The final estimates of the fractional death rates are given in Table 2. The small standard deviations of the estimates indicate that the observed $Q_{H(x)}$ and $Q_{D(x)}$ data from NHANES 1999–2010 were adequate to determine the parameters. The death rate estimates for younger (20- to 40-year-old) and middle-aged (40- to 60-year-old) U.S. adults, diagnosed with diabetes were 0.0097 (9.7 per 1000) and 0.0156 (15.6 per 1000), respectively. These fractional rate estimates represent average death risk of corresponding groups during the last decade. The death risk in diabetic adults in younger and
fractional diabetes incidence rates predicted by the Hill equation, and accuracy of diabetes prevalence predicted using NHANES incidence rate estimates versus prevalence.

Table 2
Death rate estimates (± standard deviation), and normalized sensitivity coefficients of diabetes prevalence and incidence rate with respect to model parameters and body mass index (BMI) for different age groups.

<table>
<thead>
<tr>
<th>Age group (yrs)</th>
<th>Fractional death rate parameter estimates (y⁻¹)</th>
<th>Sensitivity coefficients of diagnosed diabetes prevalence for model parameters</th>
<th>Sensitivity coefficients of diagnosed diabetes prevalence and incidence rate for BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>0.0045 ± 0.00003</td>
<td>Fractional incidence rate</td>
<td>Diabetic 0.0077 0.044 0.052 0.034</td>
</tr>
<tr>
<td></td>
<td></td>
<td>birth rate</td>
<td>Nondiabetic 0.0077 0.033 0.006 0.008</td>
</tr>
<tr>
<td>20–39</td>
<td>0.0048 ± 0.00002</td>
<td>fractional death rates</td>
<td>Diabetic −0.014 0.009 0.008 0.067</td>
</tr>
<tr>
<td>40–59</td>
<td>0.0056 ± 0.00005</td>
<td>Nondiabetic 0.003 0.021 0.014 0.096</td>
<td></td>
</tr>
<tr>
<td>≥60</td>
<td>0.0791 ± 0.00012</td>
<td>Net migration rate</td>
<td>Diabetic 0.035 0.002 0.000 0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nondiabetic 0.009 0.012 0.009 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabetes prevalence</td>
<td>NA 3.384 2.568 1.869</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabetes incidence rate</td>
<td>NA 3.952 3.012 2.232</td>
</tr>
</tbody>
</table>

Note: Nondiabetic individuals also included undiagnosed cases. The sensitivity coefficients were normalized with respect to both independent (rate parameters and body mass index) and response variables (diabetes prevalence and incidence).

Middle-aged groups were two- to three-fold greater than the risk among their nondiabetic counterparts. However, the nondiabetic older adults were associated with a slightly greater death risk than those diagnosed with diabetes. Average annual death rate of nondiabetic older adults was 79 per 1000, whereas the estimate for older adults were associated with a slightly greater death risk than among their nondiabetic counterparts. However, the nondiabetic older adults indicating a potential to simplify the model by removing the migration effects from older adult groups. Effects of birth and migration rates were notably stronger in younger than older adults. Diabetes prevalence and incidence were more strongly associated with BMI in younger adults than middle-aged and older adults. The sensitivities to BMI gradually declined as age progressed. However, it was more sensitive to diabetes incidence in younger and middle-aged than older adults (0.044 and 0.052 vs. 0.034). As expected, diabetes prevalence was negatively associated with death rates of diabetic individuals, whereas increasing death rates among nondiabetics were associated with increasing diabetes prevalence in every adult age group. The sensitivities to death rate became more pronounced as age progressed. For example, compared with younger and middle-aged adults, sensitivity of prevalence to diabetic death rate was about eight-fold greater (−0.009 and −0.008 vs. −0.007) among older adults. The sensitivities of diabetes prevalence migration rate were negligible in older adults indicating a potential to simplify the model by removing the migration effects from older adult groups. Effects of birth and migration rates were notably stronger in younger than older adults. Diabetes prevalence and incidence were more strongly associated with BMI in younger adults than middle-aged and older adults. The sensitivities to BMI gradually declined as age progressed.

Results from model prediction accuracy analyses are presented in Table 3. When NHANES fractional incidence rate estimates were used, the model notably overpredicted diabetes prevalence in younger and middle-aged adults (RMSPE = 173% and 54.2% of the average observed value; Table 3). Fractional incidence rates were then estimated with the Hill equation (parameter estimates ± standard deviations are given in Fig. 3) using BMI data. Consistent with the overpredicted prevalence, the NHANES incidence rate estimates were considerably larger than the estimates obtained from the Hill equation in middle-aged and older groups (Table 3). This confirms the greater sensitivity of diabetes prevalence to incidence rates in these groups. Fractional incidence rate estimates from the Hill equation significantly improved the accuracy of diabetes prevalence in both younger and middle-aged adults as the RMSPE declined substantially (from 173% to 20.0% and from 54.2% to 9.64%, respectively). The model reasonably predicted diabetes prevalence in older adults (RMSPE, 18.5%), even when using the diabetes incidence rate estimates from NHANES. However, the estimates from the Hill equation further reduced prediction errors (RMSPE, 7.58%) of this group as well.

The model predicted lifetime diagnosed diabetes risk of adults fairly close to the estimates from the Markov scheme used by Narayan et al. [9]. The model predicted 14.8%, 29.5%, and 55.5% lifetime risks for 18-year-old, normal weight, overweight, and obese individuals, respectively. The corresponding projections by Narayan et al. [9] were 14.2%, 32.6%, and 64.1% respectively. Our model projections for the 45- and 65-year-old individuals in respective BMI categories were 13.0, 26.0%, and 50.7%, and 7.8%, 16.5%, and 27.8%, respectively. The corresponding projections from Narayan et al. [9] were 12.5%, 28.3%, and 54.8%, and 6.5%, 16.3%, and 31.9%, respectively. The model overpredicted the 20-year diabetes risk of Caucasian women (86 vs. 58 per 1000) and underpredicted the 20-year diabetes risk of Asian (74 vs. 84 per 1000), Hispanic (90 vs. 100 per 1000), and Black (109 vs. 127 per 1000) middle-aged individuals indicating a potential to simplify the model by removing the migration effects from older adult groups. Effects of birth and migration rates were notably stronger in younger than older adults. Diabetes prevalence and incidence were more strongly associated with BMI in younger adults than middle-aged and older adults. The sensitivities to BMI gradually declined as age progressed.

Table 3
Fractional diabetes incidence rates predicted by the Hill equation, and accuracy of diabetes prevalence predicted using NHANES incidence rate estimates versus prevalence predicted using the rate estimates obtained from the Hill equation.

<table>
<thead>
<tr>
<th>Age group (yrs)</th>
<th>Fractional diabetes incidence rate</th>
<th>Diabetes prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From NHANES</td>
<td>From Hill equations</td>
</tr>
<tr>
<td>20–39</td>
<td>0.0027</td>
<td>0.0008</td>
</tr>
<tr>
<td>40–59</td>
<td>0.0086</td>
<td>0.0052</td>
</tr>
<tr>
<td>≥60</td>
<td>0.0108</td>
<td>0.0103</td>
</tr>
</tbody>
</table>

RMSPE % = square root of mean square prediction error estimate, expressed as a percentage of the average observed value; the errors were calculated pertaining to incidence and prevalence from six separate National Health and Nutrition Examination Survey (NHANES; 1999–2010) datasets.
women, compared with the observed rates in Shai et al. [20]. The model predicted the 20-year diabetes risk of middle-aged, overweight (144 vs. 140 per 1000) and obese (270 vs. 306 per 1000) middle-aged Swedish men with reasonable accuracy [21].

Conclusions

As expected, diabetes incidence rates were strongly associated with diabetes prevalence in every age group. However, death rate even dominated incidence rate in determining prevalence in older adults. This is consistent with previous observations by Monesi et al. [5]. Diabetes has been found to be the seventh leading cause of death among U.S. adults [22]. Diabetes can cause death indirectly by leading to strokes, heart attacks, and kidney failure, and as such it may not be recorded as a principal cause on death certificates. For this reason, the number of deaths attributable to diabetes could, potentially, be underestimated [6]. The annual death rates of younger and middle-aged diabetic adults considerably decreased (by 27% and 60%, respectively) from estimates from 1971 through 1993 [17]. Nonetheless, diabetic death rates in these age groups still remained at least two-fold greater than those of the non-diabetic adults. Interestingly, older diabetic adults were found to be under a slightly lesser (by 8%) death risk than older nondiabetic adults. Gulliford and Charlton [23] found similar death rate comparisons between elderly diabetic individuals and the general population in the United Kingdom. These authors implied that this could be a result of improved standards of chronic illness care leading to increased uptake of medical interventions controlling mortality risk factors. Gu et al. [17], on the other hand, suggested a greater prevalence of more life-threatening diseases than diabetes among older adults.

Because obesity is strongly associated with diabetes development risk in the United States [24,25], we chose BMI of the nondiabetic individuals for estimating diabetes development risk in terms of fractional diabetes incidence rates. Colditz et al. [26] and Ford et al. [27] clearly showed a curvilinear relationship between BMI and risk of developing diabetes mellitus among U.S. adults. Moreover, Chiu et al. [28] demonstrated a sigmoidal relationship between diabetes development risk and BMI in Canadian adults. We therefore chose the Hill equation to represent the relationship between BMI and diabetes incidence rate in our model. As expected, diabetes incidence rates estimated with the Hill equation led to more accurate prevalence predictions. This further strengthens the idea that BMI is promising predictor of diabetes risk [29]. Furthermore, this model can be extended to include other diabetes risk factors, such as fasting blood glucose and blood pressure. Our results showed that sensitivity of diabetes risk to BMI in younger adults was nearly twice that in older adults. These results agree with previous observations that weight gain in early adulthood is related to a higher risk of developing diabetes than weight gain in older age groups [30]. Furthermore, this model could provide a framework to develop a generic model for predicting risk and prevalence of the other noncommunicable diseases, such as cardiovascular diseases and cancer.

The absence of representation of ethnic and gender effects could be a significant limitation of the model [17,28]. Presently, it predicts average diabetes incidence and diabetes prevalence across ethnic groups and genders, so that the predictions are positioned, for instance, between the values of the Caucasian population in the United States having less prevalence (overpredictions), and the Hispanic and Black populations having greater prevalence (underpredictions). The model seemed to significantly overpredict (by 48%) diabetes risk in Caucasian adults compared with the extents of underprediction in Hispanic (by 10%) and Black (by 14%) adults. This is potentially an artifact of oversampled minority groups in NHANES data (i.e., 40% White, 32% Hispanic, and 23% Non-Hispanic Black), for which the model parameter were estimated. Hence, ethnic group-specific model parameter estimates can be expected to improve corresponding model predictions. Diabetes incidence estimates calculated from NHANES data seemed to be doubtful specifically in younger and middle-aged adults. This is not surprising; the NHANES surveys were not specifically designed to estimate incidence rates. Surveys targeting reliable diabetes incidence rates need to increase sample size for younger populations compared with older populations.

NHANES data do not distinguish between types 1 and 2 diabetes, so predicted prevalence gave general diabetes prevalence in U.S. adults. Nonetheless, about 95% of diabetes cases in adults are type 2. Therefore, the predictions can reasonably be ascribed to type 2. As mentioned, the nondiabetic pools (QHill) in this model also include undiagnosed cases, so the predictions are underestimates of absolute diabetes prevalence. Given the significantly declining undiagnosed diabetes prevalence in the United States [31,32], effects of this discrepancy could be minimal in the future. Additionally, the Hill equation in this model describes a likelihood of overweight or obesity to develop diabetes regardless of the pathophysiologic link between BMI and diabetes development risk. Projected diabetes risk changes in response to changes in BMI given by the model need to be interpreted carefully. Nonetheless, Gregg et al. [32] and Wee et al. [33] demonstrated the ratio of undiagnosed diabetes prevalence to diagnosed diabetes prevalence remains unchanged across different BMI categories. Therefore, the model provides opportunities to assess the pathophysiological link between BMI and diabetes development risk at least in relative terms.

We have proposed a generic mathematical framework for predicting age-specific diabetes development risk and prevalence across ethnic groups and genders. The Hill equation appropriately represents the link between BMI and diabetes risk and we have parameterized three Hill equations to project diabetes development risk in younger, middle-aged, and older adult groups. This generic age-specific layout should predict lifetime diabetes risk successfully. The sensitivity estimates obtained from this type of mechanistic model would help select critical parameters in an epidemiology model. This model also allows critical parameters (i.e., death rates) to be estimated by fitting the model to observed prevalence, which can be obtained more conveniently. Firm
conclusions regarding the prediction accuracy and model applicability should be made after a comprehensive model evaluation.

Acknowledgments

The authors thank the Advanced Foods and Materials Network of Canada, the Canada Research Chairs Program and the Sesnon Endowed Chairs Program (UC Davis) for funding support.

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.annepidem.2013.03.011.

References

