Title
Ergonomics in the Biosciences

Permalink
https://escholarship.org/uc/item/67v9p3rr

Author
Alexandre, Melanie

Publication Date
2010-07-13

Peer reviewed
Ergonomics in the Biosciences

Melanie Alexandre, OTR, CPE
Ergonomist
Lawrence Berkeley National Laboratory

This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.
Special thanks to Ira Janowitz and Christine Naca for support, collaboration and information sharing
Topics to be discussed

- Common laboratory risk factors
- JGI program
- Risks and solutions identification
- Case studies/examples
- My lessons learned
- Research & guidelines
Common risk factors
Ergonomics Risk Factors

Many lab activities involve repetitive, forceful pinching in awkward postures.
High precision demand
Static postures → Fatigue → Contact stress
Common laboratory tasks

- Pipetting
- Microscopy
- Micromanipulation
- Biosafety cabinets, fume hoods, and glove boxes
- Material handling
- Standing
- Sitting
- Computer use
Pipetting

• Risks
 – Repetitive
 – Forceful exertions
 – Awkward positions
 – Extended reach
 – Monotonous
• Controls
 – Determine best tool for job
 • Consider volume, weight, balance, length, plunger force, blowout force, tip eject force, grip comfort, display, and volume adjustment
 – Optimal work station set up
 – ‘Switch hit’
 – Create time limits/ restrictions
 – Self care techniques
Manual Pipetting – Epidemiology

- Frequent use (>300 hrs/yr) associated with high risk of hand & shoulder problems: pipetting > 1-1.5 hours per day
 - Hand problems (5.0 x control group)
 - Shoulder problems (2.4 x control group)

(David & Buckle, 1997)
(Bjorksten, 1994)
Microscopy

• Risks
 – High visual demands
 – Monotonous
 – Extended reach
 – Repetitive motion
 – Static/ awkward postures
 – Contact pressure

• Controls
 – Optimize equipment and set-up
 • Consider adjustable
 – Use external monitors
 – Self care techniques
Microscopy

85% of cytotechnologists had some musculoskeletal symptom(s): headache, neck pain/stiffness, back pain, upper-extremity discomfort.

Numbness, tingling, & pain in fingers:

>1/2 Right hand
>1/3 Left hand

Thompson, 2003
Micromanipulation

• Risks
 – Repetitive
 – Forceful use of small muscles
 – High visual demands
 – Awkward/ static postures
 – Monotonous
 – Contact pressure

• Controls
 – Optimize workstation set-up
 – Turn ‘pinch’ into ‘grip’
 – Self care techniques
Biosafety cabinets & fume hoods

• Risks
 – Glare
 – Extended reach
 – Awkward/static postures

• Controls
 – Optimal workstation set-up
 – Shorter handled tools
 – Self care techniques

What are some design guidelines for height and reach?
Gloveboxes

• Risks
 – Excessive reaching forward and sideways
 – Prolonged standing
 – Forceful grasping, reaching and lifting
 – Reduced strength due to poor fitting gloves and working out of comfort zone
 • Thicker gloves and ambidextrous gloves make the hands work harder
 – Forearm pressure from rim of glove ports
 – Glare

• Controls
 – Optimize height
 – Use properly fitted gloves
 – Avoid manual handling of objects greater than 15 pounds
 – Increasing length of levers, dials, and tools
 – Establish ways to avoid elbow and forearm pressure
 – Eliminate sources of glare
 – Place items within a comfortable reach
 – Self care techniques
Material handling

• Risks
 – Forceful exertions
 – Awkward postures

• Controls
 – Eliminate manual handling
 – Optimize placement (between chest and thigh level)
 – Self care techniques
 – Note: use team lifts sparingly
Standing

- Risks
 - Static posture
 - Can be coupled with awkward postures

- Controls
 - Optimize work station set-up
 - Provide alternatives
 - Sitting
 - Elevating a foot
 - Vary stance
 - Anti-fatigue products
 - Self care techniques
Sitting

• Risks
 – Static posture
 – Can be coupled with awkward postures
 – Inadequate leg clearance

• Controls
 – Optimize work station set-up
 – Provide alternatives
 – Self care techniques
Computer use

• Risks
 – May not follow the same guidelines that are applied in the office set-up

• Controls
 – Apply the same guidelines for office set-up
JGI Program
DOE Joint Genome Institute
Production Genomics Facility

The Human Genome 2003

Current DOE Mission Relevance

Bioenergy

Biogeochemistry

Carbon Cycling
Office & Manufacturing
Work Environments

60% staff in computer-intensive office settings

40% staff in hand-intensive production tasks (2 shifts)
Root Causes of Ergonomic Injuries

- Equipment/instruments designed for small batches used for high throughput operation

- Culture:
 - Understanding Efficiency vs. Speed

- High force hand-intensive tasks

We are striving to determine how much is too much
History of Ergonomics at JGI (Dec 2005-Current)

- **Dec’05**: JGI Ergo Program Established
- **Dec’06**
- **Mar’07**: JGI Ergo Points In-House Risk Assessment Tool
- **Aug’07**: Required Practices Established to control risk
- **Nov’07**: Early Intervention Program Established
- **Dec’07**: JGI Wins 2007 Ergo Cup Award at Applied Ergonomics Conference
- **Dec’08**: December Stand Down of Production Line
- **Feb’08**: Daily Monitoring in Production Areas
- **Apr ’10**: JGI Wins 2010 Ergo Cup!
Engineering designs and solutions

Early intervention
- Targets employees with discomfort
- Includes bi-weekly review meeting

Proactive Efforts
- Labs and offices
- Monitoring
- Walk-abouts
- Comfort surveys

Safety Culture Working Group
- Promotion
- Awareness
- Communication

Training/education
- Risk targeted classes
- Stretch break programs
- Potty training
- Website resources

Relaxation/Rejuvenation Room

Ergonomics Demo Room

Work tool and practices
- Ergo Points
- Required Practices
Organizational issues and ongoing efforts

- **Organizational issues:**
 - Responsibility
 - Accountability
 - Follow up
 - Communication
 - Trust

- **Ongoing efforts:**
 - Conduct evaluations and monitoring of individuals
 - Keep close watch on high risk folks
 - Conduct risk assessments prior to implementation of emerging technologies
 - Establish acceptable ergo risk threshold prior to implementation
Top 3 High Risk Factor Tasks (Pre-2007)

- Thermal Cycler Loading
- Peeling Seals
- Freezer Rack Lifting
Top 3 High Risk Factor Tasks (Now-2010)

- Pipetting
- Capping/uncapping
- Vortexing
Employee Driven Designs
454 & Illumina Pipetting

Viaflo

Vistalab Ovation

Eppendorf Xstream
Best Practices = Do’s and Don’ts
What is Ergo Points?

- Supervisors want to know….
 “HOW MUCH IS TOO MUCH?”

- Guidelines for schedulers
 - What tasks can be scheduled together
 - How many tasks can be conducted in one day

- No ergonomics risk tool exist for low force high repetition tasks like at JGI Production

GOAL: Reduce ergonomic risk caused by the combination of tasks assigned
Weight Watchers

<table>
<thead>
<tr>
<th>Food</th>
<th>Weight Watchers Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Fries</td>
<td>10</td>
</tr>
<tr>
<td>Cheeseburger</td>
<td>7</td>
</tr>
<tr>
<td>Big Mac</td>
<td>14</td>
</tr>
<tr>
<td>Corn on Cob</td>
<td>3</td>
</tr>
</tbody>
</table>
Weight Watchers

<table>
<thead>
<tr>
<th>Task</th>
<th>Ergo Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling bio-assay trays</td>
<td>20</td>
</tr>
<tr>
<td>Loading/Unloading Stackers (Top Loading)</td>
<td>16</td>
</tr>
<tr>
<td>Loading/Unloading Stackers (Front Loading)</td>
<td>5</td>
</tr>
<tr>
<td>Unsealing Heat Seals</td>
<td>18</td>
</tr>
</tbody>
</table>
JGI Wins the Ergo Cup Again!

FOR…the Ergonomic Program Improvement Initiatives category: “Empowering Employees in Ergonomics,” which focuses on employee-driven elements of the DOE JGI program that help promote awareness of ergonomics and safety while encouraging employee involvement in both safety & ergonomics.
Risk and Solution Identification
What risks do you see?
What could be done?

Picture 1

Picture 2
What risks do you see? What could be done?

Picture 1

Picture 2

Picture 3
What risks do you see?
What could be done?

Picture 1

Picture 2

Picture 3
What risks do you see?
What could be done?
Ways to control risk factors

1. Work with elbows close to body
 - Avoid excessive forward and sideways reaching
2. Avoid overhead and below knee tasks
3. Alternate tasks
 - To avoid repetition
 - Sitting ↔ Standing
4. Optimize work environment/equipment
5. Use grip versus pinch
6. Utilize arm/forearm support
7. Take breaks
8. Perform stretches
9. Alternate hands
10. Use both hands
Ways to control risk factors:
Alternate tasks & take breaks

- Use a cueing device
- Elevate a foot
- Take a seat
- Use anti-fatigue mats or personal shoe covers/inserts
Ways to control risk factors
Optimize equipment & utilize support

Edge padding

Microscope arm pads

Reverse action padded tweezers
Case studies/ Examples
Where should things go?
Where should things go?
Height adjustability adapts to changes in equipment and technology over time.
Bench top DNA Hood before ergo modification
Early mock-ups for 454 group input & collaboration w/ Ergo Team (June 07)
Final lab bench redesign

www.jha-techspace.com
Bench top DNA Hood re-design

1. Recessed area & tilted receptacles reduce awkward wrist postures
2. Padding protects elbows & forearms
3. Programmable pipette (Eppendorf Xstream) improves hand position, reduces force & repetitive movement
Case Study

• Animal care facility
 – Significant risk factors
 • Prolonged standing
 • Repetitive hand and arm activities
 • Overhead and below knee reaching, bending, and stooping
 • Forceful lifting, carrying, bending, reaching, pushing, and pulling
Case Study

What would you do?
My lessons learned
Lessons Learned

• Be the ‘wind beneath the wings’
 - Do not have to be a know-it-all
 - Have an “employee knows best” attitude

• Speak several languages
 - Management= $, productivity, ROI, savings
 - Employees= apply info specifically to them
Lessons Learned

- Think out of the box
- K-I-S-S
Lessons Learned

• Small successes can pave the way for bigger ones

• Create ergonomics ‘eyes and ears’ everywhere
What research shows...

- **Microscopy**
 - Thompson, S.K. & Mason, E. (December 2004)
 - Established work load limits should consider accuracy, productivity, and ergonomics
 - Found 85% of survey respondents perform only 56% of maximum work limit, but have Musculoskeletal Disorder Symptoms (MSDs)
 - James, T., Lamar, S., Marker, T. & Frederick, L. (2000)
 - Key features of ergonomically designed microscope include tilting and telescopic head, optional riser tubes, one-hand focus control, and in-line focusing
 - Results included increased comfort, especially in the neck and shoulders area when using an ergonomic microscope versus traditional microscope
 - Kofler, M., Kreczy, A., & Gschwendtner, A. (February 19, 2002)
 - EMG activity was reduced for all muscles that were studied when using the ergonomic workstation versus a standard workstation
 - Ergonomic workstation included adjustable table, microscope, and horizontal forearm supports
 - Key features of ergonomically designed microscope include adjustable ocular angle and height, adjustment knobs positioned low, forehead support
 - Key features of ergonomically designed microscope table include adjustable height, adequate space and leg room, cut-away section at front of table, tilt able ocular angle, forearm and forehead support,

- **Standing work**
 - Postural adaptations for work that is too far away include trunk and hip flexion
 - Postural adaptations for work that is too close include neck flexion and thoracic kyphosis
What research shows…

• Pipetting
 – Fredriksson, K. (May 2005)
 • The symptoms increase with:
 – Amount of time spent pipetting
 – Age
 – Weak thumb muscular structures
 • Suggestions include:
 – Consider automation as amount of time increases
 – Design with minimal button resistance
 – Handles that fit different hand sizes

• Biosafety cabinets
 – Jones, R.L. & Eagleson, D (May 2001)
 • Reach= shortest anthropometrics 8-14 inches
 • Use footrests and armrests
 • 10 degree angled view screen slope
 • Place equipment/ supplies at edge of work surface

• Lab design
 • Six Sigma can improve quality, eliminate waste, reduce lead time and costs while also improving
 ergonomics and work flow
 – Flexibility is the most important design element
 » Create abilities to expand, modify, and completely change

• Standing work
 • Postural adaptations for work that is too far away include trunk and hip flexion
 • Postural adaptations for work that is too close include neck flexion and thoracic kyphosis
Laboratory Guidelines

<table>
<thead>
<tr>
<th>Target</th>
<th>Recommendation</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Physical Environment | • Minimal per person space requirement > 10 m² / 107 ft²
 | • Passageways (1 person: 2 feet 2 persons: 3 feet) | NF X35-102 | |
| Furniture | • Use adjustable tables and seats | NF X35-104 |
| | • Hoods with easy access and comfortable seating | NF X35-105 |
| | • Place frequently used items in logical locations | ISO 9241-5 Ref.9 |
| Pipettes | • Choose pipette that fits the task | ISO 8655 |
| | • Use manufacturers recommended tips | |
| | • Use multi-channel for 96+ well plate applications | |
| | • Use motorized pipettes for repetitive and mixing tasks | |
| Work Organization | • Do not exceed more than 30 gestures/minute | NF EN 1005-5 |
| | • Take frequent, short breaks | |
| | • Take a mandatory pause after each sequence of repetitive tasks | |
| | • Vary tasks (work with different muscles) | |
| Work Conditions | • Noise <55dBA | ISO 9241-6 ISO 7730 |
| | • Comfortable ambient temperature | NF X35-103 |
| | • Lighting 300-600 lux | |
| | • Eliminate glare and reflections | |

Adapted from Gilson Laboratory Ergonomics: Things you should know… things you should do http://www.gilson.com/Downloads/mlhAppNote1.pdf
References and resources

- Center for Disease Control, Laboratory Ergonomics website http://www.cdc.gov/od/ohs/Ergonomics/labergo.htm

Include JGI intranet if available